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Abstract

Abstract

Model-based clustering is a complex problem, addressed for instance using mix-
ture models. In this thesis, we focus on Bayesian nonparametric mixture models.
These models are well-known for being consistent when used for density estimation.
However, the consistency of the posterior distribution does not provide asymptotic
guarantees in the context of clustering problems.

In the first two contributions, we study the consistency of the number of clusters
using Bayesian nonparametric mixture models applied to finite mixtures. Results
demonstrate posterior inconsistency for the number of clusters in this framework
for specific nonparametric priors, such as the Dirichlet process and the Pitman-Yor
process. We prove that those results apply to a general class of Bayesian nonpara-
metric priors, the Gibbs-type processes, and some finite-dimensional representations
thereof. Next, we discuss possible solutions proposed in the literature and show the
application of these solutions to some of the studied priors. Second, we focus on
a particular Gibbs-type process, the Pitman–Yor process with a hyperprior on its
concentration parameter. Although placing a prior on the concentration hyperpa-
rameter, particularly in Dirichlet process mixture models, has been a common strat-
egy to address the inconsistency issue, we provide a rigorous proof that Pitman–Yor
process mixture models still suffer from inconsistency in the number of clusters in
this framework.

In the final contribution, we apply these models to a real-world problem in
ecotoxicology. We propose a Bayesian nonparametric mixture model to assess the
ecological risks of water contaminants. The choice of a Bayesian nonparametric ap-
proach offers several advantages, including its efficiency in handling small datasets
typical of environmental risk assessments, its ability to provide uncertainty quan-
tification, and its capacity for simultaneous density and clustering estimation. We
utilize a specific nonparametric prior from the class of normalized random measures
with independent increments as the mixing measure, chosen for its robust clustering
properties. Following the theoretical results from the first part of the thesis, we do
not consider the raw posterior distribution on the number of clusters but follow a
decision-theoretic framework to estimate data clustering.
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Résumé

La classification, ou clustering, des données est un problème complexe, souvent
traité à l’aide de modèles de mélange. Dans cette thèse, nous nous concentrons sur
les modèles de mélange bayésiens non paramétriques. Ces modèles sont bien connus
pour être consistants lorsqu’ils sont utilisés pour l’estimation de densité. Cependant,
la consistance de la distribution a posteriori ne garantit pas asymptotiquement la
résolution des problèmes de classification.

Dans les deux premières contributions, nous étudions la consistance du nombre de
clusters en utilisant des modèles de mélange bayésiens non paramétriques appliqués
à des mélanges finis. Premièrement, nous prouvons que des résultats d’inconsistance
s’appliquent à une classe générale de priors bayésiens non paramétriques, les pro-
cessus de type Gibbs, et à certaines de leurs représentations de dimension finie.
Ensuite, nous discutons des solutions possibles proposées dans la littérature et mon-
trons l’application de ces solutions à certains des priors étudiés. Deuxièmement,
nous nous concentrons sur un processus de type Gibbs particulier, le processus de
Pitman–Yor avec un hyperprior sur son paramètre de concentration. Bien que la
mise en place d’un prior sur le paramètre de concentration, notamment dans les
modèles de mélange de processus de Dirichlet, soit une stratégie courante pour ré-
soudre le problème d’inconsistance, nous montrons que le nombre de clusters avec
un modèle de mélange de processus de Pitman–Yor est encore inconsistant dans ce
cas.

Dans la dernière contribution, nous appliquons ces modèles à un problème réel en
écotoxicologie. Nous proposons un modèle de mélange bayésien non paramétrique
pour évaluer les risques écologiques de contaminants de l’eau. Le choix d’une ap-
proche bayésienne non paramétrique offre plusieurs avantages, notamment son ef-
ficacité à gérer de petits ensembles de données typiques de l’évaluation des risques
environnementaux, sa capacité à fournir une quantification de l’incertitude, ainsi
qu’une estimation simultanée de la densité et du clustering. Nous utilisons un prior
non paramétrique spécifique de la classe des mesures aléatoires normalisées à incré-
ments indépendants comme mesure de mélange, choisi pour ses propriétés robustes
en matière de classification. À cause des résultats théoriques de la première partie de
la thèse, nous ne considérons pas la distribution a posteriori du nombre de clusters
mais suivons un cadre décisionnel pour estimer le clustering des données.

v



Contents

List of Figures ix

List of Tables x

List of Acronyms xii

1 Introduction 1
1.1 The Bayesian non-parametric framework . . . . . . . . . . . . . . . . 1
1.2 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Bayesian mixture models (in)consistency for the number of clusters 32
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Bayesian mixture models and mixing measures . . . . . . . . . . . . . 39
2.3 Inconsistency results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Consistency results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6 Real-data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.A Proofs of the results of Section 2.3 . . . . . . . . . . . . . . . . . . . . 65
2.B Details on the results of Section 2.4 . . . . . . . . . . . . . . . . . . . 69
2.C Proofs of the results of Section 2.4 . . . . . . . . . . . . . . . . . . . . 74
2.D Details on the simulation study of Section 2.5 . . . . . . . . . . . . . 76
2.E Details on the real-data analysis of Section 2.6 . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Pitman–Yor mixture models with a prior on the precision incon-
sistency in the number of clusters 85
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



CONTENTS

3.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3 Theoretical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Species Sensitivity Distribution revisited: a Bayesian nonparamet-
ric approach 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4 Analysis of contaminant-wise clustering . . . . . . . . . . . . . . . . . 112
4.5 Cross-contaminant clustering . . . . . . . . . . . . . . . . . . . . . . . 115
4.6 Discussion and future research . . . . . . . . . . . . . . . . . . . . . . 119
4.A Results on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.B Details on the non-negative tensor factorization . . . . . . . . . . . . 128
4.C Additional figures for Section 4.5 . . . . . . . . . . . . . . . . . . . . 129
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Conclusion & Perspectives 142

vii



List of Figures

1.1 Illustration of the stick-breaking representation. . . . . . . . . . . . . 5
1.2 Illustration of the Chinese Restaurant Process. . . . . . . . . . . . . . 6
1.3 Graphical representation of the relationship between the different

Bayesian nonparametric (BNP) priors. . . . . . . . . . . . . . . . . . 10
1.4 Example of a mixture of three univariate normal densities. . . . . . . 12
1.5 Graphical representation of the relationship between the different fi-

nite priors. An arrow indicates that the target is a special case of the
origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Graphical representation of the relationships between the discrete
mixing measures considered in this article. . . . . . . . . . . . . . . . 43

2.2 Illustrations of Condition 2.1 and prior probability on the number of
clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Prior and posterior distributions of the number of clusters Kn under
a Dirichlet multinomial process mixture. . . . . . . . . . . . . . . . . 55

2.4 Mixture weights under a Dirichlet multinomial process mixture. . . . 56
2.5 Distribution of K̃, that is the posterior number of clusters after ap-

plying the Merge-Truncate-Merge algorithm of Guha et al. (2021). . . 57
2.6 “Regularization path” for K̃. . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 Real-data analysis: prior and posterior distributions of the number

of clusters Kn for various models and corresponding “regularization
paths” for K̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Dirichlet multinomial process mixtures varying concentration param-
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1.1 The Bayesian non-parametric framework

The origins of Bayesian statistics date back to the 18th century with the introduc-
tion of Bayes’ rule or Bayes’ theorem in 1763 by Thomas Bayes. This result was
later generalized by Laplace, who also contributed to some computational aspects
of Bayesian statistics. This approach to statistics was later overlooked in favor of
frequentist statistics, partly because of the need for numerical calculation to com-
pute the quantities of interest to Bayesian statistics. In the middle of the 20th
century, significant advancements in Bayesian computation (Metropolis et al. 1953;
Hastings 1970) as well as in Bayesian theory (Finetti 1937; Jeffreys 1939; Savage
1954) contributed to a rise in interest in this area.

Bayesian statistics is often described in terms of its interpretation of probability.
Roughly speaking, it aims to give meaning to the notion of subjectivity within
statistics. More precisely, the probability of an event is the degree of belief in this
very event. Assume that the data X belongs to a general space X and follows a
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1.1. THE BAYESIAN NON-PARAMETRIC FRAMEWORK

distribution parametrized by θ in the space of parameters Θ. The way to express this
belief is to consider the parameters as random variables sampled from a so-called
prior distribution, which characterizes this belief. Then, a Bayesian statistical model
may be written as

X | θ ∼ p(x | θ), θ ∼ p(θ),

where p(θ) is the prior, which is a probability measure on the parameter set Θ,
and p(x | θ) is the likelihood. Using Bayes’ theorem, one may define a posterior
distribution as follows

p(θ | x) = p(θ)p(x | θ)
p(x) .

Here, p(x) is called the marginal distribution of X and acts as a normalizing con-
stant. The posterior distribution is a conditional distribution on the sample space
X , it represents the conditional probability of θ given the observed data X. and
reflects the updated knowledge of θ after incorporating the data. The analysis of
this posterior distribution is the aim of Bayesian statistics.

1.1.1 Bayesian nonparametric inference

One of the main problems in Bayesian statistics is the choice of the prior. The
prior needs to summarize prior knowledge and accommodate all uncertainties. A
natural way to provide such flexibility on the prior is to consider a so-called Bayesian
nonparametric (BNP) framework where the model may involve an arbitrary number
of parameters, possibly in infinite dimensions. This allows the number of parameters
to adapt to the complexity of the data.

However, defining a prior is more complex and requires more care in a nonpara-
metric framework. In this case, the prior is a probability measure on an infinite
dimensional space, hence challenging to define. A way to construct such a prior is
to use de Finetti’s representation of infinite exchangeable sequences (Finetti 1937;
Hewitt and Savage 1955). The infinite sequence (X1, . . . , Xn, . . .) is exchangeable if
for any finite permutation σ of {1, . . . , n}, n ≥ 1, (X1, . . . , Xn) d= (Xσ(1), . . . , Xσ(n))
with the equality being understood in distribution. More precisely, de Finetti’s The-
orem states that an infinite sequence (X1, . . . , Xn, . . .) is exchangeable if and only
if it is a mixture ofsequences of identically and independently distributed (i.i.d.)
random variables (see Hjort et al. 2010, for more details). Consequently, from this
theorems it follows that (X1, . . . , Xn, . . .) is exchangeable if there exists a probability
measure Q such that

Xi | G
iid∼ G, i ∈ N⋆, G ∼ Q, (1.1)

where Q is the distribution of a random measure G. The distribution Q can be inter-
preted as a prior distribution. We recover a parametric setting if Q degenerates on a

2



CHAPTER 1. INTRODUCTION

finite-dimensional space. For example,Q ({G : G(dx) = N (µ, σ2)dx, (µ, σ) ∈ R2}) =
1 corresponds to the model with a Gaussian likelihood and a prior on the location
and scale parameters (µ, σ). Conversely, if Q is supported on an infinite dimensional
space, then Q is a nonparametric prior.

As mentioned previously, a Bayesian nonparametric model has at least one in-
finitely dimensional parameter. Typically, this parameter could be a function or a
probability measure, for which different kinds of priors are considered. Gaussian
processes (see e.g. Williams and Rasmussen 2006) are random functions and a com-
mon prior for function space. Another prior for continuous functions is the Pólya
tree (Lavine 1992). On the other side, different stochastic processes based on de
Finetti’s representation theorem are commonly used as prior on probability mea-
sures. In both cases, the prior is the law governing the stochastic process. The most
famous prior in BNP is the Dirichlet process introduced in Ferguson (1973), more
details on this particular prior and generalizations are provided in the following
section.

The BNP framework proposes some flexible models, typically used in density
estimation, where the unknown distributions are sampled from a prior (Lo 1984).
BNP models are also used in model-based clustering (see Section 1.3) or latent
factor models (Ghahramani and Griffiths 2005). The theory behind BNP is complex,
especially compared to the parametric framework. However, these models perform
well in real applications, such as ecology (Zito et al. 2022), genetics (Masoero et al.
2022), and medicine (Albughdadi et al. 2017), among many others.

The Bayesian nonparametric framework is relatively recent, with significant de-
velopment occurring after the introduction of the Dirichlet process (Ferguson 1973),
as well as advancements in computational methods. The community has nonetheless
provided useful overall reviews on the field. The interested reader may look at Hjort
et al. (2010); Ghosal and van der Vaart (2017).

In what follows, we introduce mixture models which describe heterogeneous data.
We focus in particular on BNP mixture models using priors defined below in Sec-
tion 1.1.2. Then, we consider these mixture models to face clustering problems. We
describe model-based clustering with BNP mixture models and a Bayesian decision-
theoretic framework to estimate data clustering. Once the framework is established,
one may derive asymptotic results on consistency. We finally present such consis-
tency results for BNP mixture models.

1.1.2 Bayesian nonparametric priors

As introduced previously, several different priors based on stochastic processes exist
within Bayesian nonparametrics. In this section, we present some priors based on
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1.1. THE BAYESIAN NON-PARAMETRIC FRAMEWORK

the exchangeability assumption. The class of priors we focus on are called species
sampling processes (Ghosal and van der Vaart 2017, see Chapter 14) and is consti-
tuted of discrete random probability measures.

Before describing the different priors, we introduce some useful notions. A
partition A of {1, . . . , n} in k elements, is a decomposition in k non-empty and
disjoints sets of {1, . . . , n}: A = (A1, . . . , Ak), with ∪ki=1Ai = {1, . . . , n} and for
i, j ∈ {1, . . . , k} such that i ̸= j, Ai ∩ Aj = ∅. We denote by ni = |Ai| the cardinal-
ity of each set in the partition so that by definition ∑k

i=1 ni = n.

Definition 1.1 (Exchangeable partition Ghosal and van der Vaart 2017). A random
partition An of {1, . . . , n} is called exchangeable if its distribution is invariant under
the action of any permutation σ : {1, . . . , n} → {1, . . . , n}. In other words, for all
partitions A = (A1, . . . , Ak) of {1, . . . , n} the probability P (An = (σ(A1), . . . , σ(Ak))
is the same for any σ. Equivalently, An is exchangeable if there exist a symmetric
function p, such that for all partitions A = (A1, . . . , Ak) of {1, . . . , n},

P (An = (σ(A1), . . . , σ(Ak))) = p(n1, . . . , nk). (1.2)

The function p is called the exchangeable partition probability function (EPPF) of
An.

With this definition, we can define an infinite exchangeable random partition
as a sequence of exchangeable random partitions of {1, . . . , n}, (An)n∈N, such that
An−1 is equal to the partition obtained from An by leaving out the element n. An
equivalent EPPF can be defined for the infinite exchangeable random partition (see
e.g. Pitman 1995).

In what follows, we describe different nonparametric priors, which are examples
of Q in Equation (1.1). The relation between all these priors and where each is used
in the thesis is summarized at the end of the section in Figure 1.3.

Dirichlet process (DP). The Dirichlet process, introduced in Ferguson (1973),
is arguably the most used BNP prior. A Dirichlet process is parameterized by a
concentration parameter α > 0 and a base measure H. A random measure G on the
sample space X has a Dirichlet process distribution if for every finite measurable
partition A = (A1, . . . , Ak) of X

(G(A1), . . . , G(Ak)) ∼ Dir(αH(A1), . . . , αH(Ak)),

4



CHAPTER 1. INTRODUCTION

and is denoted by G ∼ DP(α,H). Dir denotes the Dirichlet distribution. The
random measure G defined in this way turns out to be discrete and can be written

G =
∑
j>1

wjδθj
,

where θ1, . . . , θk, . . . is a sequence of random variables such that θj iid∼ H, δθj
rep-

resents a discrete measure concentrated at θj, and w1, . . . , wk, . . . is a sequence of
random variables representing the weights, such that ∑j>1 wj = 1 almost surely.

The construction of these weights follows the stick-breaking representation in-
troduced in Sethuraman (1994). The idea is that considering a stick of unit size,
one sequentially breaks the stick into two parts with random sizes. The size of these
parts, or equivalently the breaking location, follows a Beta distribution. Figure 1.1
is an illustration of this procedure. Following this representation, a discrete random

v1 (1 − v1)

v2(1 − v1) (1 − v1)(1 − v2)

v3(1 − v1)(1 − v2) (1 − v1)(1 − v2)(1 − v3)

v4
∏

i≤3(1 − vi)
∏

i≤4 (1 − vi)

·
··

w1 w2 w3 w4 . . .

Figure 1.1: Illustration of the stick-breaking representation.

measure G with a weight distribution defined by w1 = v1 and wj = vj
∏
i<j(1 − vi)

where vj iid∼ Beta(1, α) and θj
iid∼ H is such that G ∼ DP(α,H).

The Dirichlet process distribution can also be constructed through the distribu-
tion of the induced partition. As the Dirichlet process is a discrete random measure
G, a finite sample X1:n = (X1, . . . , Xn) from G would have some ties meaning that it
would have Kn ≤ n distinct values: X⋆

1 , . . . , X
⋆
Kn

, each with a respective frequency:
n1, . . . , nKn such that ∑Kn

j=1 ni = n. A partition of {1, . . . , n} with Kn clusters, where
the clusters are defined by the equivalence relation i ∼ j if and only if Xi = Xj, is
induced by G. The infinite exchangeable random partition generated by a sample
of the Dirichlet process DP(α,H) is called the Chinese Restaurant Process. The
EPPF associated is of the form

p(n1, . . . , nk) = αk

(α + 1)n−1

k∏
i=1

(ni − 1)!,

where (x)n = x(x + 1) · · · (x + n − 1) is the ascending factorial and (x)0 = 1 by

5



1.1. THE BAYESIAN NON-PARAMETRIC FRAMEWORK

convention. The metaphor associated with the Chinese restaurant process goes as
follows: suppose a Chinese restaurant possesses an infinite number of tables, each
with infinite seating, and customers arrive sequentially. The first customer sits at
an arbitrary empty table with a probability of 1. Then, the second customer can sit
at the same table or open a new one. The process repeats for all the customers who
can choose between opening a new table or sitting at an already-opened one. The
probability of sitting at different tables describes the Dirichlet process distribution.
The second customer chooses with probability 1/(α + 1) the table opened by the
first customer and with probability α/(α + 1) a new table. More generally, the
(n+1)th customer finds n customers already seated at k different tables on n1, . . . , nk

groups. Then, this customer chooses with probability nj/(α + n) the table j, and
with probability α/(α + n) a new table. Figure 1.2 illustrates this procedure.

1 2 3 “new”

6

1 2

7

3 8

5

4

Figure 1.2: Illustration of the Chinese Restaurant Process. In this example, the
9th customer chooses to sit at tables from left to right with probability 3/(α + 8),
4/(α + 8), 1/(α + 8), and α/(α + 8).

Pitman–Yor process (PY). Many extensions exist for the Dirichlet process, the
most famous being the Pitman–Yor process introduced in Perman et al. (1992) and
further investigated in Pitman and Yor (1997). This process is also known as the
two-parameter Poisson–Dirichlet process. It is a natural extension of the Dirichlet
process parametrized by an extra parameter, increasing its flexibility. The Pitman–
Yor process is parametrized by a precision parameter α, a discount parameter σ,
and a base measure H. The parameters α and σ are such that σ < 0 and α ∈
{−2σ,−3σ, . . .}, or σ ∈ [0, 1) and α > −σ.

Similarly to the Dirichlet process, the Pitman–Yor process can be defined through
the distribution of the underlying partition. A Pitman–Yor partition is an infinite
exchangeable partition with EPPF given by

p(n1, . . . , nk) =
∏k−1
j=1(α + jσ)
(α + 1)n−1

k∏
i=1

(1− σ)ni−1.

It is also possible to use the stick-breaking representation: a discrete random mea-
sure G has a Pitman–Yor process distribution if the weights are distributed such
that w1 = v1 and wj = vj

∏
i<j(1− vi) where vj iid∼ Beta(1− σ, α+ jσ), and θj ind∼ H.

6



CHAPTER 1. INTRODUCTION

We denote G ∼ PY(α, σ,H).
Note that if σ = 0 then G ∼ PY(α, 0, H) is equivalent to G ∼ DP(α,H).

Gibbs-type process. Another natural extension of the Dirichlet process is the
Gibbs-type process class introduced in Gnedin and Pitman (2006) (see e.g. Pitman
2006; De Blasi et al. 2015, for more details). This class is more general than the
Pitman–Yor process class. In particular, the DP and PY are subclasses of the
Gibbs-type process class.

Gibbs-type processes are parameterized by σ ∈ (−∞, 1), which determines the
type of the process. In particular, the Gibbs-type process with σ = 0 is the Dirichlet
process.

The common way to define Gibbs-type processes is through random partition.
A Gibbs partition is an infinite exchangeable random partition with EPPF of the
following form

p(n1, . . . , nk) = Vn,k
k∏
i=1

(1− σ)ni−1, (1.3)

where the Vn,k are nonnegative numbers for n ∈ N⋆, k ∈ {1, . . . , n}, satisfying the
recurrence relation V1,1 = 1 and Vn,k = (n − σk)Vn+1,k + Vn+1,k+1. The Gibbs-
type process is the process characterized by the distribution of the Gibbs partition.
Then, Gibbs-type processes are characterized by their EPPF and hence by the Vn,k
numbers. For example, for a PY the Vn,k numbers are as follow

Vn,k =
∏k−1
j=1(α + jσ)
(α + 1)n−1

,

and for a DP, Vn,k = αk/(α)n.
Another way to characterize species sampling processes is through the predic-

tive distribution closely related to the EPPF. The predictive distribution is the
distribution of a new observation, knowing the previous ones. Given observations
X1:n = (X1, . . . , Xn) sampled from Xi | G

iid∼ G, G ∼ Q, the predictive distribution
is the following,

P(Xn+1 = xn+1 | X1:n) =
∫
p(xn+1)Q(dp | X1:n),

where Q(· | X1:n) denotes the posterior distribution of G. For example, in the DP
case, the predictive distribution is

P(Xn+1 | X1:n) = α

α + n
H + 1

α + n

n∑
i=1

δXi
.

This quantity and the idea of prediction are used in the Chinese restaurant process.
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1.1. THE BAYESIAN NON-PARAMETRIC FRAMEWORK

In the PY case, the predictive distribution when X1:n are grouped in Kn clusters is

P(Xn+1 | X1:n) = α + σKn

α + n
H + 1

α + n

n∑
i=1

(nj − σ)δXi
.

De Blasi et al. (2015) show that the predictive distribution of a Gibbs-type process
depends only on the sample size n and the number of distinct values Kn. This is
even an equivalence; if the predictive distribution of a species sampling process only
depends on Kn and n, then it is a Gibbs-type process. The predictive distribution
of a Gibbs-type prior is the following

P(Xn+1 | X1:n) = Vn+1,k+1

Vn,k
H + Vn+1,k

Vn,k

n∑
i=1

(nj − σ)δXi
.

We have already introduced two special cases of Gibbs-type processes; however,
those are not the only notable processes in this class. Some other examples are nor-
malized generalized Gamma processes, normalized inverse Gaussian processes, and
normalized-stable processes. Now, we give further details on these three processes.

Normalized generalized Gamma process (NGG). As said previously, the
NGG (see for more details Lijoi et al. 2007), is a particular case of Gibbs-type
processes for which σ ∈ (0, 1). The NGG is characterized by the following Vn,k

numbers,

Vn,k = eβσk−1

Γ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ

(
k − i

σ
; β
)
,

where β > 0 is another parameter, and Γ(·; ·) is the incomplete gamma function:
Γ(x; a) =

∫∞
x sa−1e−sds. Let G be a random measure that follows the normalized

generalized Gamma process distribution, we denote G ∼ NGG(β, σ). NGG is a large
class of priors; different interesting priors are part of the class. As a first example,
if σ → 0, then we recover the Dirichlet process.

If σ = 1/2, then we obtain the normalized inverse Gaussian process (NIG) (Lijoi
et al. 2005a). Similarly to the Dirichlet process, the marginals of this process admit
an explicit distribution. The NIG can then be defined in the same way as the DP.
A random measure G on X follows a normalized inverse-Gaussian process with a
base measure H if for every measurable partitions A = (A1, . . . , Ak) of X

(G(A1), . . . , G(Ak)) ∼ NIG (H(A1), . . . , H(Ak)) ,

where NIG stands for the finite-dimensional normalized inverse-Gaussian distribu-
tion.

Finally, if β = 0, we obtain the normalized stable process (NS). NS introduced in

8



CHAPTER 1. INTRODUCTION

Kingman (1975) is also a special case of the Pitman–Yor process, obtained by taking
α = 0 and σ ∈ (0, 1). As the whole class of NGG, this process is also a normalized
random measures with independent increments (NRMI) (Lijoi et al. 2008). This
prior is used in Chapter 4. NGG is the only Gibbs-type process, which is also a
particular case of NRMI, which we briefly describe now.

Normalized random measures with independent increments (NRMI). Be-
fore defining NRMI, we will introduce completely random measures (CRM) (King-
man 1967). A completely random measure on the space X is a random element
µ̃ such that for any measurable partition (A1, . . . , Ak) of X , the random variables
µ̃(A1), . . . , µ̃(Ak) are independent. CRM are (almost surely) discrete measures and
can be represented as

µ̃ =
∑
i≥1

JiδZi
,

where Ji are positive jumps and Zi are locations, both are random and indepen-
dent. A characterization of a CRM is given by its Laplace transform. The Laplace
transform of a measure µ̃(A) for A ∈ X is defined for λ > 0 as,

LA(λ) = E[e−λµ̃(A)] = exp
[
−
∫
R+×A

(1− e−λs)ν(ds, dx)
]
.

We only consider homogeneous CRM (see Chapter 3 in Hjort et al. 2010) which are
characterized by a Lévy intensity ν(ds, dx) := ρ(s)ds α(dx) where α is a parameter
measure on X .

A normalized CRM µ̃, µ̃/µ̃(X ), defines a normalized random measure with in-
dependent increments. NRMI are also characterized by their Lévy intensity. For
example, the normalized stable process is a NRMI with Lévy intensity characterized
by the following function,

ρ(s) = σ

Γ(1− σ)s1+σ .

For a NRMI with intensity measure ν, the Laplace exponent is defined (for
λ > 0) by ψ(λ) := − log (LX (λ)) =

∫
R+×X (1 − e−λs)ν(ds, dx). Then, the EPPF for

this NRMI is of the following form,

p(n1, . . . , nk) = (−1)n−k

Γ(n)

∫
λn−1e−ψ(λ)

k∏
j=1

ψ(nj)(λ)dλ,

where ψ(nj)(λ) =
∫
R+×X s

nj e−λsν(ds, dx).
For more details on NRMI see e.g. Regazzini et al. (2003); James et al. (2009).

Figure 1.3 summarizes the relationships between the different priors introduced
and outlines this thesis by indicating which priors are considered in each chapter.
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All the Gibbs-type processes are introduced again in Section 2.2. As illustrated in

Gibbs NRMI

PY NGG

DP NS NIG

Figure 1.3: Graphical representation of the relationship between the different BNP
priors. An arrow indicates that the target is a special case of the origin. In green
are the priors considered in Chapter 2, in orange the ones in Chapter 3 and in
blue those in Chapter 4.

Figure 1.3, the priors used in this thesis are closely related. However, due to differ-
ences in their definition, some of these priors are preferred in certain applications
(Ayed et al. 2019). In addition, the more general these priors are, the more flexible
they are, but also the less tractable and easy to use.

The processes introduced in this section are all associated with a random parti-
tion. Then, these processes are naturally used as priors in Bayesian nonparametric
mixture models, where the induced infinite random partition yields clusters in the
observations. This mechanism is reviewed in the next two sections.

1.2 Mixture models

Mixture models are useful tools for representing complex data, especially that com-
ing from heterogeneous populations. They have been used for over 150 years in both
Bayesian and frequentist statistics. We begin by presenting the classic formulation
of a mixture model, then we adopt the Bayesian point of view and describe the
problem of choosing the number of subpopulations in the data.

1.2.1 Basic formulation

We consider data such that each observation belongs to one subpopulation or group,
and each group is characterized by a density, making it homogeneous within a given
group. All the different groups are supposed to be unknown and are some latent
parameters of the model. Hence, the membership of one observation to one of the
different groups is also unknown. These groups are commonly called components.

10
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More formally, an observation x comes from a K-components mixture distribution
if it is drawn from a mixture density of the following form

X ∼ fX(·) =
K∑
k=1

wkf(· | θk), (1.4)

where w1:K = (w1, . . . , wK) are positive weights such that ∑K
k=1 wk = 1, and f(· | θk)

represents a component-specific kernel density parametrized by θ1:K = (θ1, . . . , θK).
Statement (1.4) may equivalently be expressed as

X ∼
∫
f(· | θ)G(dθ), (1.5)

where G is a discrete mixing measure G := ∑K
k=1 wkδθk

with positive weights w1:K

such that ∑K
k=1 wk = 1 and atoms θ1:K .

Mixture models can also be defined using latent variables describing the com-
ponent allocation for each observation. More precisely, let K be the number of
components, the latter being in proportion wk, k = 1, . . . , K, in the total popula-
tion. We denote by z1:n = (z1, . . . , zn) the allocation variables associated to each
data point (x1, . . . , xn). The variables zi are such that zi = k if xi belongs to group
k. The model is now described by

Xi | zi
ind∼ f(· | θzi

), with P(zi = k) = wk, i = 1, . . . , n.

This representation is used in Chapter 4, where the allocation variables are inferred.

A commonly used density family for kernel densities is the Gaussian family,
defining Gaussian mixture models, an example of which is given in Figure 1.4. This
parametric family is the most frequently encountered throughout this thesis.

Because of their definition, mixture models are flexible and can handle a variety
of data and problems. Mixture models typically address density estimation (Escobar
and West 1995; Ferguson 1983). They can also perform model-based clustering (Fra-
ley and Raftery 2002), which is the main focus of this thesis. They are used in many
applications for example in healthcare (Ramírez et al. 2019; Ullah and Mengersen
2019), image analysis (Gerogiannis et al. 2009), ecology (Attorre et al. 2020), econo-
metrics (Frühwirth-Schnatter et al. 2012), networks (Durante and Dunson 2018),
genomics (Allison et al. 2002), and many others. For more details on mixture mod-
els, the interested reader could refer to the handbook Frühwirth-Schnatter et al.
(2019).

11



1.2. MIXTURE MODELS
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Figure 1.4: Example of a mixture of three univariate normal densities. The model
is 1/4×N (−2, 1) + 1/2×N (0, 1.52) + 1/4×N (2, 0.52).

1.2.2 Bayesian mixture models

In the Bayesian setting, a common way to deal with mixture models is to consider
the model described in Equation (1.5) and put a prior on the mixing measure G.
The mixing measure G depends on the number of components K, the weights w1:K ,
and the locations θ1:K . An important and difficult task is to choose the number
of components K beforehand. From a frequentist point of view, this problem is
usually treated as a model selection problem, using criteria such as the Bayesian
Information Criteria (BIC) or the Integrated Completed Likelihood (ICL). In our
Bayesian framework, the number of components K can be considered as finite,
infinite, or random. In this section, we provide some insights into these three points
of view.

1.2.2.1 Finite mixture models

When the number of components K is considered fixed and finite, we deal with
finite mixture models where K could be known or unknown. In both cases, in
a Bayesian mixture model, the parameters of the model, the mixing distribution,
and the component parameters are drawn from a prior distribution. We denote K0

the real number of components of the mixture distribution from which the data
is sampled. The idea of a true value for a parameter is linked with the study of
frequentist asymptotic properties for statistical models. We develop this perspective
in the upcoming Section 1.4.
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If K is known, so that K = K0, we are in an exact-fitted setting. In this case, we
only need a prior on (w1:K , θ1:K). Commonly, we choose a prior such that under this
prior, the θk are independently and identically distributed and independent from
w1:K . A typical prior for the weights w1:K is the Dirichlet distribution.

If K is unknown, one way to handle the choice of K is to choose K great enough
to ensure K ≥ K0. In this case, we speak of overfitted mixture models. A classic
prior for the weights is the Dirichlet distribution, w1:K ∼ Dir(α1, . . . , αK). Rousseau
and Mengersen (2011) study this prior and the properties of the associated overfitted
mixture model. Taking α1 = . . . = αK = α/K leads to the Dirichlet multinomial
process. This process is a finite approximation of the Dirichlet process. In Chapter 2,
we also consider different types of parametric priors, which we will describe now.

We introduce some finite-dimensional representations for the BNP priors de-
scribed in Section 1.1.2 in the sense that K < ∞. Using them yields overfitted
mixture models. Those finite-dimensional priors provide convenient and tractable
models. Considering the limit K → ∞, one retrieves their corresponding nonpara-
metric priors. In the following, we give more details on the Dirichlet multinomial
process and recently proposed finite-dimensional versions of the Pitman–Yor process
and normalized random measures with independent increments (Lijoi et al. 2024;
Lijoi et al. 2020).

Dirichlet multinomial process (DMP). The most commonly used example
of such a finite-dimensional representation, introduced previously, is the Dirichlet
multinomial distribution (see for instance Muliere and Secchi 1995; Ishwaran and
Zarepour 2000; Ishwaran and Zarepour 2002). The DMP is parametrized by a
concentration parameter α > 0, the number of components K, and a base measure
H. It is a random discrete measure G = ∑K

k=1 wkδθk
characterized by a Dirichlet

distribution on the weights with parameter α/K: w1:K ∼ Dir(α/K, . . . , α/K). The
location parameters θk are distributed according to the base measure H.

Like the other finite-dimensional priors considered below, the DMP can also be
defined hierarchically. The DMP is a discrete random probability measure GK such
that

GK | G0,K ∼ DP(α;G0,K), G0,K = 1
K

K∑
k=1

δθ̃k
,

where θ̃k iid∼ H.
The DMP with parameters α, K, and H approximates the Dirichlet process with

parameters α and H and converges to it weakly, when K →∞ (Muliere and Secchi
2003).
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Pitman–Yor multinomial process (PYM). The Pitman–Yor multinomial pro-
cess introduced in Lijoi et al. (2020) is based on the Pitman–Yor process. The PYM
is parametrized by a base measure H, parameters α, and σ, which have a similar role
as in the PY case. The PYM is defined as a discrete random probability measure
GK such that

GK | G0,K ∼ PY(σ, α;G0,K), G0,K = 1
K

K∑
k=1

δθ̃k
,

where θ̃k iid∼ H. As for DMP, the marginal distribution of the PYM is available. Let
GK be a random measure sampled from a PYM, the weights of GK have a ratio-
stable distribution (Carlton 2002), w1:K = (w1, . . . , wK) ∼ RS(σ, α; 1/K, . . . , 1/K).

The PYM generalises the Dirichlet multinomial process. As with the PY, the
random probability measure pK of the PYM reduces to the Dirichlet multinomial
process when σ = 0. Lijoi et al. (2020) prove that PYM approximates PY, in the
sense that PY is obtained as a limiting case when K →∞ (see Theorem 5 in Lijoi
et al. 2020). In addition, PYM is more flexible than DMP (Lijoi et al. 2020).

Normalized infinitely divisible multinomial process (NIDM). NIDM pro-
cesses are introduced by Lijoi et al. (2024) and can be seen as a finite approximation
for NRMI. NIDM processes can be described as NRMI measures using a hierarchical
structure

GK | G0,K ∼ NRMI(c, ρ;G0,K), G0,K = 1
K

K∑
k=1

δθ̃k
,

where θ̃k iid∼ H, H is a base measure. In this expression, ρ is a function, defined in
Section 1.1.2, that characterizes the NRMI process used. The choice ρ(s) = s−1e−s

corresponds to the Dirichlet process, and the NIDM process associated is the Dirich-
let multinomial process. Similarly, choosing ρ(s) = 1

Γ(1−σ)s
−1−σe−βs, 0 ≤ σ < 1 and

β ≥ 0 corresponds to NGG. We then get the normalized generalized Gamma multi-
nomial process (NGGM).

Figure 1.5 summarizes the relationships between the different priors introduced.
These priors are again introduced with details on their associated EPPF in Sec-
tion 2.2.

1.2.2.2 Bayesian nonparametric mixture models

Aiming to solve the same problem as overfitted mixture models, infinite mixture
models assume an infinite number of components, K =∞, to avoid committing to
a choice of K. In this case, the mixing measure is an infinite random measure, so
Bayesian nonparametric priors are needed. In this framework, the mixing measure
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NIDM

PYM NGGM

DMP

Figure 1.5: Graphical representation of the relationship between the different finite-
dimensional priors described in Section 1.2.2.1. An arrow indicates that the target
is a special case of the origin. In green are the priors considered in Chapter 2.

is of this form
G =

∑
i≥1

wiδθi
,

where θ1, θ2, . . . ∈ X is a sequence of location random variables such that θi iid∼ H,
w1, w2, . . . are random variables representing the weights, such that ∑i≥1 wi = 1.

The Dirichlet process mixture model is the most common BNP mixture model;
it was first introduced Lo (1984). The Dirichlet process mixture model is defined as

Xi | θi
ind∼ f(· | θi),

θi | G
iid∼ G, (1.6)

G ∼ DP(α,H).

It is also possible to opt for other BNP priors on the mixing measure G, such
as the extensions to the Dirichlet process mentioned in Section 1.1.2. These priors
allow the number of clusters to increase with the number of observations. Using these
models, a common way to estimate the true number of components K0 is to infer
the number of clusters, denoted Kn, through its posterior distribution. Chapter 2
and Chapter 3 study the estimation of K0 using those models. Such models can also
be used to perform model-based clustering. This is developed in Section 1.3.

Although an infinite number of components may seem unrealistic, another way of
looking at it is that the number of components increases with sample size. Different
data behave this way, one of the most known examples being species discovery. In
species discovery, the more observations available, the more likely a new species will
be discovered. In practice, scientists regularly discover new species. Other examples,
such as finding communities in networks, are discussed in Broderick (2016). BNP
mixture models are typically used to model these types of data, Frühwirth-Schnatter
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et al. 2019, Chapter 17 also provide applications of BNP mixture models in finance.
However, BNP mixture models are sometimes used to describe data from a finite

mixture with an unknown number of components K0. In this case, the model is
somewhat misspecified, as an infinite number of components is used to model K0.
Because of the good properties of BNP mixture models e.g. for density estimation,
this practice is quite common but raises some questions about the estimation of K0.
This issue is addressed briefly in Section 1.4 and in more detail in Chapter 2 and
Chapter 3.

1.2.2.3 Mixture of finite mixtures

Following the Bayesian approach, a natural way to bypass the choice of the number
of components K is to consider K as a parameter of the model and put a prior on
it. This defines the Mixture of Finite Mixtures model (MFM), a natural extension
of the finite mixture model where the number of components K is an unknown
parameter with a prior pK . Using the latent allocation variable formulation, the
model is then defined as

K ∼ pK ,

w1, . . . , wK | K ∼ Dir(α, . . . , α)

z1, . . . , zn | w1:K
iid∼ w1:K (1.7)

θ1, . . . , θK | (H,K) iid∼ H,

Xi | θ1:K , z1:n
ind∼ p(· | θzi

), i = 1, . . . , n,

where the third line is a way to describe a variable following a Categorical distri-
bution with parameter w1:K , H is a prior or base measure on the parameter space
Θ and Dir is the finite Dirichlet distribution. The prior on the mixing measure,
G = ∑

k wkδθk
, is a Gibbs-type prior (see Section 1.1.2) indexed by a negative dis-

count parameter σ = −α.
This method allows the posterior distribution of the number of components to be

examined directly, in addition to the posterior distribution of the number of clusters.
This class of models is studied, for instance, in Nobile (1994), Richardson and Green
(1997), Miller and Harrison (2018), and Frühwirth-Schnatter et al. (2021).

1.3 Clustering

Clustering is the task of categorising data points with high similarity into groups.
This is the central task in unsupervised learning used in various applications, such as
genes analysis (McLachlan et al. 2005), marketing (Wedel and Kamakura 2000) or
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medicine (Rosen and Tanner 1999); these examples and others are detailed in Chap-
ter 8 of Frühwirth-Schnatter et al. 2019. Clustering problems can be addressed using
algorithmic approaches such as hierarchical clustering or k-means algorithm. These
approaches are based on a definition of the similarities between the observations.
Another way to deal with clustering is through model-based clustering, which we
describe below.

1.3.1 Model-based clustering

Model-based clustering requires formulating a probabilistic model to fit the data
and estimate the clusters (Wade 2023; Frühwirth-Schnatter et al. 2019, Chapter 8).
The model is commonly considered as a mixture model (Fraley and Raftery 2002).
Using a mixture model, each cluster corresponds to a filled (or non-empty) mixture
component. Note that we make a difference here, and in this thesis in general,
between the notion of components and clusters. A component represents a group in
the population and is part of the model, while a cluster is the estimation of a group.
In a Bayesian setting, the components can be seen as the groups a priori and the
clusters as the estimation a posteriori.

In a Bayesian framework, one may use a Bayesian mixture model as defined in
Section 1.2.2. An important task is to select the number of components. Given our
distinction between clusters and components, we denote K the number of compo-
nents, and Kn the number of clusters. The number of components K is an upper
bound on the number of clusters Kn as some components in the model can be empty.
As presented in the previous section, different models are considered, such as over-
fitted mixture models (K <∞), BNP mixture models (K =∞), or mixture of finite
mixtures models (K random), see Section 1.2.2.

We can also define a mixture model using latent variables. This model is de-
scribed in the previous section and recalled here

Xi | zi
ind∼ f(· | θzi

), with P(zi = k) = wk, i = 1, . . . , n. (1.8)

This definition of a mixture model provides latent variables z1:n = (z1, . . . , zn) called
the allocation variables. For observed data (x1, . . . , xn), the allocation variable zi
is such that zi = k if xi belongs to group k. By definition, the allocation variable
describes the clustering of the data. Following the Bayesian approach, we construct
a posterior distribution on this variable

p(z1:n | X1:n) ∝ p(X1:n | z1:n)p(z1:n),

where p(z1:n) is a prior over the space of clusterings, while p(X1:n | z) is sometimes
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called the kernel likelihood and is specified in model-based clustering by Equation
(1.8). Alternatively, the quantity p(X1:n | z1:n) can also be defined using a loss-based
approach as proposed in Rigon et al. (2023).

Related to the loss-based approach, using the Bayesian decision theory frame-
work to estimate a point estimate of clustering is also interesting. This method is
described below.

1.3.2 Clustering point estimate

Using model-based clustering, we can estimate the clustering posterior distribu-
tion. However, one problem with Bayesian clustering is summarising this posterior
distribution in a point estimate (Dahl 2006; Lau and Green 2007). In practice, the
posterior distribution is available through Markov chain Monte Carlo (MCMC) tech-
niques, which produce a large number of approximate samples from the posterior
distribution. Using a point estimate such as the posterior mode, posterior mean,
or posterior median is common. However, in clustering analysis, where each sample
represents a partition and the partition space is unordered, computing the poste-
rior median is not feasible. Furthermore, defining a sum of clustering to compute a
posterior mean is ambiguous. Hence, the posterior mode is the only estimate with
a natural definition in this context.

The common method, based on decision theory, proposes choosing the cluster
that minimizes a loss function as the point estimate. More formally, given a loss
function L over the clustering space, and z1:n the true clustering, the point estimate
z⋆1:n is the estimate minimizing the posterior expected loss

z⋆1:n = arg min
ẑ1:n

E [L(z1:n, ẑ1:n) | X1:n] = arg min
ẑ1:n

∑
z1:n

L(z1:n, ẑ1:n)p(z1:n | X1:n). (1.9)

It is clear in this formulation that the specification loss L is significant in the deter-
mination of z⋆1:n.

Defining a loss over the clustering space is not trivial. However, in the literature,
different losses have been studied and proposed. The most classic one is the 0 − 1
loss denoted L0−1, and defined as L0−1(z1:n, ẑ1:n) = Iz1:n ̸=ẑ1:n . This loss leads to the
following point estimate z⋆:

z⋆1:n ∈ arg min
ẑ1:n

∑
z1:n

Iz1:n ̸=ẑ1:np(z1:n | X1:n)

∈ arg min
ẑ1:n

(
1− p(ẑ1:n | X1:n)

)
∈ arg max

ẑ1:n
p(ẑ1:n | X1:n),

18



CHAPTER 1. INTRODUCTION

which corresponds to choosing a Maximum a posteriori (MAP). Another common
loss is the Binder loss (Binder 1978), which we denote B and is defined as

B(z1:n, ẑ1:n) =
∑
i<j

ℓ1Izi=zj
Iẑi ̸=ẑj

+ ℓ2Izi ̸=zj
Iẑi=ẑj

,

where ℓ1 and ℓ2 are penalizing both types of misclassification error, usually ℓ1 =
ℓ2 = 1. The Binder loss is studied in Bayesian nonparametrics in Lau and Green
(2007). Meilă (2007) proposes an alternative loss named variation of information
(VI). For z1:n a clustering in k clusters and ẑ1:n a clustering in k̂, the VI is defined
as

VI(z1:n, ẑ1:n) =
k∑
i=1

ni•
n

log
(
ni•
n

)
+

k̂∑
j=1

n•j

n
log

(
n•j

n

)
−

k∑
i=1

k̂∑
j=1

nij
n

log
(
nij
n

)
,

where nij is the count of data both in cluster zi and ẑj, ni• = ∑
j nij and n•j = ∑

i nij.
This is studied in Wade and Ghahramani (2018), where its performance is compared
with the Binder loss. Other loss functions are considered in e.g. Quintana and
Iglesias (2003); Fritsch and Ickstadt (2009); Dombowsky and Dunson (2023).

The different losses described above have various benefits. The MAP clustering
based on a Dirichlet process mixture model is studied in Rajkowski (2019). The-
oretical results are obtained, such as the unicity of the MAP estimator and good
asymptotic properties in specific cases. Lawless (2023), in Chapter 4 shows the
consistency of the MAP clustering for a Dirichlet process mixture model when the
parameter α decays with the sample size. Chaumeny et al. (2022) study the perfor-
mance of different losses in practice by conducting a simulation study. Wade (2023)
reviewed the performance of the MAP, the Binder loss, and the VI on two different
examples proposed in Miller and Harrison (2013) and Rajkowski (2019).

In practice, the point estimation of the clustering is challenging and computa-
tionally expensive. Indeed, the minimization problem in (1.9) is hard to solve due to
the large dimension of the clustering space. The cardinality of this space is growing
exponentially fast with the sample size and is characterized by the Bell number.
Then, it is impossible to enumerate all the possible clustering and explore the whole
clustering space. A greedy algorithm to solve this optimization problem is avail-
able (see e.g. Wade and Ghahramani 2018; Rastelli and Friel 2018). Another recent
algorithm is described in dahl2022search.

The results and methods presented here have been discussed in more detail in
Wade (2023).
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1.4 Asymptotic properties

In statistics, a common way to assess the theoretical quality of a model is to study
its asymptotic properties. Ideally, a statistician would like to study the properties of
the model for a finite sample of size n. As this is a complex problem with no solution
for most models, an asymptotic approach is used as the best possible solution. 1 This
section presents two different properties in a Bayesian framework: consistency and
its refinement, contraction rate. We also provide some existing results for Bayesian
nonparametric mixture models

1.4.1 Consistency

In a frequentist framework, an estimator θ̂n is used to estimate the parameter θ.
This parameter is supposed to have a fixed and unknown value denoted θ0. The
model is consistent at θ0 if the estimator θ̂n converges in probability to θ0 when the
sample size n goes to infinity.

Moving to a Bayesian framework, the posterior distribution characterizes the
parameter θ. We are now looking for posterior consistency, an asymptotic property
of the posterior. The hypothesis of a true value for the parameter is counter-intuitive
in the Bayesian framework, where we are traditionally interested in a parameter
distribution. On the contrary, we adopt here a frequentist point of view of Bayes
procedures. Following Diaconis and Freedman (1986), we assume that the data are
distributed according to a true θ0. Then, the posterior is considered consistent if it
converges in any neighborhood of θ0 when the sample size increases to infinity.

Definition. More formally, given a prior distribution p on the parameter space Θ,
where Θ is assumed to be a metric space with a metric d, we denote by p(· | X1:n)
the posterior distribution with X1:n a given sample of the data. The posterior
distribution is said to be consistent at θ0 ∈ Θ if

p(U c | X1:n) −→
n→∞

0,

in Pθ0-probability for all neighborhoods U of θ0.
For instance, considering Bayesian nonparametric (BNP) mixture models, we

denote by fX0 the true density of the data. Then, the posterior density fX is said to
be consistent at fX0 if, for a distance d on Θ, p(d(fX , fX0 ) ≥ ε | X1:n) −→

n→∞
0, in

PfX
0

-probability for all ε > 0. It is also possible to define posterior consistency for the
number of clusters or the mixing measure. The posterior number of clusters Kn is
said to be consistent at K0 if p(Kn = K0 | X1:n) −→

n→∞
1 in PfX

0
-probability. There
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is consistency for the mixing measure G at G0 if p(d(G,G0) ≥ ε | X1:n) −→
n→∞

0 in
PfX

0
-probability.

Existing results. An early result on posterior consistency in the nonparamet-
ric framework is Doob’s Theorem (Doob 1948), which says that for a fixed prior,
the posterior distribution is consistent at every value except those in sets that are
of null prior measure. This is an interesting result but not enough in BNP be-
cause it is a prior-dependent result and the prior null set could be very large for
a nonparametric prior (Ghosal and van der Vaart 2017, Section 6.2). Another
known result is Schwartz’s Theorem (Schwartz 1965). We consider a probability
density f0, and define the Kullback–Leibler support of the prior p as those densi-
ties f0 such that p(Kε(f0)) > 0, where Kε is the Kullback–Leibler neighborhood,
Kε(f0) = {f,

∫
f0 log(f0/f) < ε}. Roughly speaking, this theorem states that if the

true distribution or parameter is in the K-L support of the prior, then the posterior
is consistent at f0.

Posterior consistency has been studied for BNP mixture models. These models
are notably consistent for density estimation (Ghosal et al. 1999; Lijoi et al. 2005b;
Ghosal and van der Vaart 2017). Consistency of the mixing measure has also been
proven for Dirichlet process (DP) mixture models (Nguyen 2013). The asymptotic
behavior of the Gibbs-type process class is studied in De Blasi et al. (2013). In
Chapter 2 and Chapter 3, we study the posterior consistency for the number of
clusters in BNP mixture models. Existing results in Miller and Harrison (2014) state
posterior inconsistency for the number of clusters of a DP and a Pitman–Yor process
(PY) mixture model. The posterior consistency of other Bayesian mixture models
is also studied. For example, mixture of finite mixture (MFM) are consistent for
density estimation (Kruijer et al. 2010), mixing measure estimation Nobile (1994),
and the number of components estimation (Guha et al. 2021; Miller 2023).

Misspecification. All these consistency results assume that the kernel of the mix-
ture model is well-specified, meaning that the data are generated from a mixture of
distributions that belong to the same family as the kernel used in the model. The
study of the misspecified case is also important, as we could expect to face some
kernel or mixing measure misspecification in practice. Kleijn and van der Vaart
(2006) states general consistency results in the case of prior misspecification and
provides examples where these results are valid, e.g. for the mixing measure of a
Dirichlet mixture model with a Gaussian location kernel. However, in the MFM
case, despite the consistency results for well-specified models, Cai et al. (2021) pro-
vide inconsistent results for the number of clusters when the kernel is misspecified
or even slightly misspecified. The well-specified assumption is made throughout the
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rest of the thesis.

1.4.2 Contraction rate

An improvement of the posterior consistency property is the evaluation of the speed
at which a posterior distribution concentrates around the true parameter. The
quantity that measures this speed is called a posterior contraction rate. As before,
the parameter space Θ is supposed to be a metric space with a metric d. A sequence
εn is a posterior contraction rate at the parameter θ0 with respect to the metric
d if for every Mn → ∞, p(d(θ, θ0) ≥ Mnεn | X1:n) −→

n→∞
0 in Pθ0-probability. As

in the case of posterior consistency, it is possible to study the contraction rate at
a parameter value but also at a probability density or at a random measure such
as the mixing measure in a mixture model. The literature on contraction rates in
Bayesian nonparametric has been developed in recent decades (see e.g. Ghosal et al.
2000; Ghosal and van der Vaart 2001; van der Vaart 2004; van der Vaart and van
Zanten 2008).

For mixture models, the contraction rates of the posterior distribution of a Dirich-
let process mixture model are studied in Ghosal and van der Vaart (2007), and the
mixing measure rates of convergence for the same model are studied in Nguyen
(2013). The Pitman–Yor process mixture model is also considered in Scricciolo
(2014). Some results on contraction rates of finite mixture models (Section 1.2.2.1)
are provided in Ho and Nguyen (2016).

For more details and results on posterior consistency or contraction rates, the
interested reader could refer to Ghosal and van der Vaart 2017, Chapters 6 to 9.

1.5 Thesis outline

This thesis is separated into two parts. The first part gives theoretical insights into
Bayesian mixture models, while the second part presents an application of one of
these models to real data.

In the first part, we study the asymptotic properties, as described in Section 1.4,
for estimating the number of components K0 in a finite mixture model. The first
part comprises Chapter 2 and Chapter 3. In Chapter 2, we study the consistency
when using Gibbs-type process (Section 1.1.2) and finite-dimension representations
thereof (Section 1.2.2.1) mixture models to estimate K0. We prove inconsistency
results in both cases. Then, we investigate proposed solutions in the literature, such
as the Merge-Truncate-Merge post-processing procedure introduced in Guha et al.
(2021). This chapter is based on the following paper:
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L. Alamichel, D. Bystrova, J. Arbel, and G. Kon Kam King (2024). “Bayesian
mixture models (in)consistency for the number of clusters”. In: Scandinavian
Journal of Statistics.

In Chapter 3, we keep the same framework and study the particular case of
Pitman–Yor process mixture models with a hyperprior on the concentration param-
eter (see Section 1.1.2 for PY). This work is motivated by a solution proposed to
the inconsistency issue in Ascolani et al. (2022) for the Dirichlet process mixture
model. This solution is to place a prior on the concentration parameter. Contrary
to the Dirichlet process case, we prove inconsistency in the PY case. Chapter 3 is
an extension of:

C. Lawless, L. Alamichel, J. Arbel, and G. Kon Kam King (2023). “Clustering
inconsistency for Pitman–Yor mixture models with a prior on the precision but
fixed discount parameter”. In: Fifth Symposium on Advances in Approximate
Bayesian Inference.

In the second part, we propose a Bayesian nonparametric mixture model to as-
sess ecological risk. This model is used to perform density and clustering estimation
simultaneously. In the first part, we proved inconsistency results for Bayesian non-
parametric mixture models when the true number of components is finite. The
framework in this second part is different, as the true number of components is
most probably infinite. Still, we do not focus on the posterior number of clusters
but choose to use a loss-based approach, as described in Section 1.3, to estimate
the clustering; this approach seems to behave well in practice (see Chaumeny et al.
2022). We also use a prior in the class of normalized random measures with indepen-
dent increments (NRMI), chosen for its robust clustering properties (Barrios et al.
2013). The second part is composed of Chapter 4, which is based on the following
recently submitted paper:

L. Alamichel, J. Arbel, G. Kon Kam King, and I. Prünster (2024+). Species
Sensitivity Distribution revisited: a Bayesian nonparametric approach. Sub-
mitted
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Chapter 2

Bayesian mixture models
(in)consistency for the number of
clusters

The first part of this thesis is devoted to the asymptotic properties of the
posterior number of clusters in a mixture model. This first Chapter is a
joint work with Daria Bystrova, Julyan Arbel, and Guillaume Kon Kam
King. This work began during my internship and continued after the start
of my PhD. We extended the inconsistency results for Pitman–Yor and
Dirichlet process mixtures provided by Miller and Harrison (2014). We also
studied a number of solutions proposed in the literature and proved their
applicability.
Daria Bystrova and I contributed equally to this work. All authors con-
tributed to the theoretical development of the paper. Daria Bystrova and
I conducted the simulation and real-data study, we wrote the first draft,
while all authors contributed to the writing of the final version. This Chap-
ter is based on the following paper, available on arXiv and accepted in the
Scandinavian Journal of Statistics:

L. Alamichel, D. Bystrova, J. Arbel, and G. Kon Kam King (2024).
“Bayesian mixture models (in)consistency for the number of clusters”.
In: Scandinavian Journal of Statistics
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Abstract Bayesian nonparametric mixture models are common for modeling com-
plex data. While these models are well-suited for density estimation, recent results
proved posterior inconsistency of the number of clusters when the true number
of components is finite, for the Dirichlet process and Pitman–Yor process mixture
models. We extend these results to additional Bayesian nonparametric priors such
as Gibbs-type processes and finite-dimensional representations thereof. The latter
include the Dirichlet multinomial process, the recently proposed Pitman–Yor, and
normalized generalized gamma multinomial processes. We show that mixture mod-
els based on these processes are also inconsistent in the number of clusters and
discuss possible solutions. Notably, we show that a post-processing algorithm intro-
duced for the Dirichlet process can be extended to more general models and provides
a consistent method to estimate the number of components.

Keywords— Clustering; Finite mixtures; Gibbs-type process; Finite-dimensional
BNP representations.

2.1 Introduction

Motivation. Mixture models appeared as a natural way to model heterogeneous
data, where observations may come from different populations. Complex probabil-
ity distributions can be broken down into a combination of simpler models for each
population. Mixture models are used for density estimation, model-based cluster-
ing (Fraley and Raftery 2002) and regression (Müller et al. 1996). Due to their
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flexibility and simplicity, they are widely used in many applications such as health-
care (Ramírez et al. 2019; Ullah and Mengersen 2019), econometrics (Frühwirth-
Schnatter et al. 2012), ecology (Attorre et al. 2020) and many others (further ex-
amples in Frühwirth-Schnatter et al. 2019).

In a mixture model, data X1:n = (X1, . . . , Xn), Xi ∈ X ⊂ Rp are modeled as
coming from a K-components mixture distribution. If the mixing measure G is
discrete, i.e. G = ∑K

i=1 wiδθi
with positive weights wi summing to one and atoms θi,

then the mixture density is

fX(x) =
∫
f(x | θ)G(dθ) =

K∑
k=1

wkf(x | θk), (2.1)

where f(· | θ) represents a component-specific kernel density parameterized by θ.
We denote the set of parameters by θ1:K = (θ1, . . . , θK), where each θk ∈ Rd, k =
1, . . . , K. Model (2.1) can be equivalently represented through latent allocation
variables z1:n = (z1, . . . , zn), zi ∈ {1, . . . , K}. Each zi denotes the component from
which observation Xi comes: p(Xi | θk) = p(Xi | zi = k) with wk = P (zi = k).
Allocation variables zi define a clustering such that Xi and Xj belong to the same
cluster if zi = zj. Moreover, z1, . . . , zn define a partition A = (A1, . . . , AKn) of
{1, . . . , n}, where Kn denotes the number of clusters.

It is important to distinguish between the number of components K, which
is a model parameter, and the number of clusters Kn, which is the number of
components from which we observed at least one data point in a dataset of size n
(Frühwirth-Schnatter et al. 2021; Argiento and De Iorio 2022; Greve et al. 2022).
For a data-generating process with K0 components, inference on K is typically done
by considering the number of clusters Kn and the present article investigates to what
extent this is warranted.

Although mixture models are widely used in practice, they remain the focus of ac-
tive theoretical investigations, owing to multiple challenges related to the estimation
of mixture model parameters. These challenges stem from identifiability problems
(Frühwirth-Schnatter 2006), label switching (Celeux et al. 2000), and computation
complexity due to the large dimension of parameter space.

Another critical question, which is the main focus of this article, regards the
number of components and clusters, and whether it is possible to infer them from
the data. This question is even more crucial when the aim of inference is cluster-
ing. The typical approach to estimating the number of components in a mixture
is to fit models of varying complexity and perform model selection using a classic
criterion such as the Bayesian Information Criterion (BIC), the Akaike Information
Criterion (AIC), etc. This approach is not entirely satisfactory in general, because
of the need to fit many separate models and the difficulty of performing a reliable
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model selection. Therefore, several methods that bypass the need to fit multiple
models have been proposed. They define a single flexible model accommodating
various possibilities for the number of components: mixtures of finite mixtures,
Bayesian nonparametric mixtures, and overfitted mixtures. These methods have
been prominently proposed in the Bayesian framework, where the specification of
prior information is a powerful and versatile method to avoid overfitting by unduly
complex mixture models.

Three types of discrete mixtures. Although we consider discrete mixing mea-
sures, G could be any probability distribution (for continuous mixing measures, see
for instance Chapter 10 in Frühwirth-Schnatter et al. 2019). Depending on the
specification of the mixing measure, there exist three main types of discrete mixture
models: finite mixture models where the number of components K is considered
fixed (known, equal to K0, or unknown), mixture of finite mixtures (MFM) where
K is random and follows some specific distribution, and infinite mixtures where K
is infinite. Under a Bayesian approach, the latter category is often referred to as
Bayesian nonparametric (BNP) mixtures.

Specification of the number of components K is different for the three types of
mixtures. When K is unknown, the Bayesian approach provides a natural way to
define the number of components by considering it random and adding a prior for
K to the model, as is done for mixtures of finite mixtures. Inference methods for
MFM were introduced by Nobile (1994); Richardson and Green (1997).

Using Bayesian nonparametric (BNP) priors for mixture modeling is another way
to bypass the choice of the number of components K. This is achieved by assuming
an infinite number of components, which adapts the number of clusters found in a
dataset to the structure of the data. The most commonly used BNP prior is the
Dirichlet process introduced by Ferguson (1973) and the corresponding Dirichlet
process mixture was first introduced by Lo (1984). The success of the Dirichlet
process mixture is based on its ease of implementation and computational tractabil-
ity. However, in some cases the Dirichlet process prior may be restrictive, so more
flexible priors such as the Pitman–Yor process can be used. Gibbs-type processes,
introduced by Gnedin and Pitman (2006), form an important general class of priors,
which contain Dirichlet and Pitman–Yor processes and have flexible clustering prop-
erties while maintaining mathematical tractability, see Lijoi and Prünster (2010);
De Blasi et al. (2015) for a review. Compared to the Dirichlet process, Gibbs-type
priors exhibit a predictive distribution which involves more information, that is,
sample size and number of clusters (refer to the sufficientness postulates for Gibbs-
type priors of Bacallado et al. 2017). The class of Gibbs-type priors encompasses
BNP processes which are widely used, for instance in species sampling problems
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(Favaro et al. 2009; Favaro et al. 2012; Cesari et al. 2014; Arbel et al. 2017; Lijoi
et al. 2007b), survival analysis (Jara et al. 2010), network inference (Caron and Fox
2017; Legramanti et al. 2022), linguistics (Teh and Jordan 2010) and mixture mod-
eling (Ishwaran and James 2001; Lijoi et al. 2005a; Lijoi et al. 2007a). Miller and
Harrison (2018); Frühwirth-Schnatter et al. (2021); Argiento and De Iorio (2022)
study the connection between the mixtures of finite mixtures and BNP mixtures
with Gibbs-type priors. A common approach to inferring the number of clusters in
Bayesian nonparametric models is through the posterior distribution of the number
of clusters.

Finally, finite mixture models are considered when K is assumed to be finite. We
distinguish two cases, depending on whether the number of components is known
or unknown. The case when the number of components is known, say K = K0, is
referred to as the exact-fitted setting. An appealing way to handle the other case
(K0 unknown) is to use a chosen upper bound on K0, i.e. to take the number of
components K such that K ≥ K0, yielding the so-called overfitted mixture models.
A classic overfitted mixture model is based on the Dirichlet multinomial process,
which is a finite approximation of the Dirichlet process (see Ishwaran and Zare-
pour 2002, for instance). Generalizations of the Dirichlet multinomial process were
recently introduced by Lijoi et al. (2024); Lijoi et al. (2020), which lead to more
flexible overfitted mixture models.

Asymptotic properties of Bayesian mixtures. A minimal requirement for
the reliability of a statistical procedure is that it should have reasonable asymptotic
properties, such as consistency. This consideration also plays a role in the Bayesian
framework, where asymptotic properties of the posterior distribution may be stud-
ied. In Table 2.1, we provide a summary of existing results of posterior consistency
for the three types of mixture models, when it is assumed that data come from a
finite mixture and that the kernel f(· | θ) correctly describes the data generation
process (i.e. the so-called well-specified setting). We denote by K0 the true number
of components, G0 the true mixing measure, and fX0 the true density written in the
form of (2.1). For finite-dimensional mixtures, Doob’s theorem provides posterior
consistency in density estimation (Nobile 1994). However, this is a more delicate
question for BNP mixtures. Extensive research in this area provides consistency re-
sults for density estimation under different assumptions for Bayesian nonparametric
mixtures, such as for Dirichlet process mixtures (Ghosal et al. 1999; Ghosal and
van der Vaart 2007; Kruijer et al. 2010) and other types of BNP priors (Lijoi et al.
2005b). In the case of MFM, posterior consistency in the number of clusters as well
as in the mixing measure follows from Doob’s theorem and was proved by Nobile
(1994). Recently, Miller (2023) provided a new proof with simplified assumptions.
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For finite mixtures and Bayesian nonparametric mixtures, under some condi-
tions of identifiability, kernel continuity, and uniformity of the prior, Nguyen (2013)
proves consistency for mixing measures and provides corresponding contraction
rates. These results only guarantee consistency for the mixing measure and do not
imply consistency of the posterior distribution of the number of clusters. In con-
trast, posterior inconsistency of the number of clusters for Dirichlet process mixtures
and Pitman–Yor process mixtures is proved by Miller and Harrison (2014). To the
best of our knowledge, this result was not shown to hold for other classes of priors.
We fill this gap and provide an extension of Miller and Harrison (2014) results for
Gibbs-type process mixtures and some of their finite-dimensional representations.

Inconsistency results for mixture models do not impede real-world applications
but suggest that inference about the number of clusters must be taken carefully. On
the positive side, and in the case of overfitted mixtures, Rousseau and Mengersen
(2011) establish that the weights of extra components vanish asymptotically under
certain conditions. Additional results by Chambaz and Rousseau (2008) establish
posterior consistency for the mode of the number of clusters. Guha et al. (2021)
propose a post-processing procedure that allows consistent inference of the number
of clusters in mixture models. They focus on Dirichlet process mixtures and we
provide an extension for Pitman–Yor process mixtures and overfitted mixtures in
this article. Another possibility to solve the problem of inconsistency is to add
flexibility for the prior distribution on a mixing measure through a prior on its
hyperparameters. For Dirichlet multinomial process mixtures, Malsiner-Walli et
al. (2016) observe empirically that adding a prior on the α parameter helps with
centering the posterior distribution of the number of clusters on the true value (see
their Tables 1 and 2). A similar result is proved theoretically by Ascolani et al.
(2022) for Dirichlet process mixtures under mild assumptions.

As a last remark, although we focus on the well-specified case, an important
research line in mixture models revolves around misspecified-kernel mixture models,
when data are generated from a finite mixture of distributions that do not belong to
the kernel family f(· | θ). Miller and Dunson (2019) shows how so-called coarsened
posteriors allow performing inference on the number of components in MFMs with
Gaussian kernels when data come from skew-normal mixtures. Cai et al. (2021) pro-
vide theoretical results for MFMs, when the mixture component family is misspeci-
fied, showing that the posterior distribution of the number of components diverges.
Misspecification is of course a topic of critical importance in practice, however, the
well-specified case is challenging enough to warrant its own extensive investigation.

Contributions and outline. In this rather technical landscape, it can be difficult
for the non-specialist to keep track of theoretical advances in Bayesian mixture
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models. This article aims to provide an accessible review of existing results, as well
as the following novel contributions (see Table 2.1):

• We extend Miller and Harrison (2014) results to additional Bayesian non-
parametric priors such as Gibbs-type processes (Proposition 2.1) and finite-
dimensional representations of them (including the Dirichlet multinomial pro-
cess and Pitman–Yor and normalized generalized gamma multinomial pro-
cesses, Proposition 2.2);

• We discuss possible solutions. In particular, we show that the Rousseau and
Mengersen (2011) result regarding emptying of extra clusters holds for the
Dirichlet multinomial process (Proposition 2.3). Second, we establish that the
post-processing algorithm introduced by Guha et al. (2021) for the Dirichlet
process extends to more general models and provides a consistent method to
estimate the number of components (Propositions 2.4 and 2.5).

• We also provide insight into the non-asymptotic efficiency and practical ap-
plication of these solutions through an extensive simulation study, and inves-
tigate alternative approaches which add flexibility to the prior distribution of
the number of clusters.

Quantity of interest
Finite Infinite MFM

K = K0 K ≥ K0 K =∞ K random

Density fX0 ! [RGL19] ! [RGL19] ! [GvdV17] ! [KRV10]

Mixing measure G0 ! [HN16] ! [HN16] ! [Ngu13] ! [Nob94]

Nb of components K0 N/A % [ours] / ! % [MH14, ours] / ! ! [GHN21]

Table 2.1: Results on consistency for different mixture models and quantities of
interest in the case where kernel densities are well-specified and data comes from a
finite mixture. Consistency is indicated with ! and inconsistency with %. Our
contributions regard the shaded cells. The references cited are [RGL19] Rousseau
et al. 2019, Theorem 4.1; [GvdV17] Ghosal and van der Vaart 2017, Theorem 7.15;
[KRV10] Kruijer et al. 2010; [HN16] Ho and Nguyen 2016; [Ngu13] Nguyen 2013;
[Nob94] Nobile 1994; [MH14] Miller and Harrison (2014); [GHN21] Guha et al.
(2021).

The structure of the article is as follows: we start by introducing the notion
of a partition-based mixture model and by presenting Gibbs-type processes and
finite-dimensional representations of BNP processes in Section 2.2. We then recall
in Section 2.3 the inconsistency results of Miller and Harrison (2014) on Dirichlet
process mixtures and Pitman–Yor process mixtures and present our generalization.
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We discuss some consistency results and a post-processing procedure in Section 2.4.
We conclude with a simulation study illustrating some of our results in Section 2.5
and a real data analysis in Section 2.6, while the appendix contains proofs and
additional details on the simulation and real data study.

2.2 Bayesian mixture models and mixing mea-
sures

We introduce or recall some notions useful for the rest of the paper. We start by
defining the mixture model considered. It is based on a partition, whose distribution
determines important aspects of the mixture. We introduce different types of priors
on the partition, the Gibbs-type process, and some finite-dimensional representa-
tions of nonparametric processes such as the Pitman–Yor multinomial process. We
conclude this section by recalling the notions of posterior consistency and contrac-
tion rate.

2.2.1 Partition-based mixture model

We consider partition-based mixture models as in Miller and Harrison (2014). Let
Ak(n) be the set of ordered partitions of {1, . . . , n} into k ∈ {1, . . . , n} nonempty
sets:

Ak(n) :=
{

(A1, . . . , Ak) : A1, . . . , Ak disjoint,
k⋃
i=1

Ai = {1, . . . , n}, |Ai| ≥ 1 ∀i
}
.

We denote by ni := |Ai| the cardinality of set Ai. We consider a partition
distribution p(A) on ⋃n

k=1Ak(n), which induces a distribution p(k) on {1, . . . , n}.
We denote by p a prior density on the parameters θ ∈ Θ ⊂ Rd and f(· | θ) a
parametrized component density. The hierarchical structure of a partition-based
mixture model is:

p(θ1:k |A, k) =
k∏
i=1

p(θi),

p(X1:n |A, k, θ1:k) =
k∏
i=1

∏
j∈Ai

f(Xj | θi),

where X1:n = (X1, . . . , Xn) with Xi ∈ X , θ1:k = (θ1, . . . , θk) with θi ∈ Θ, and
A ∈ Ak(n). In the rest of the article, we denote by Kn the number of clusters in
a dataset of size n, which is denoted k in this section for ease of presentation. Kn

highlights this quantity’s random nature and dependence on n.
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The distribution p on the set of ordered partitions determines the type of the
mixture model. Here, we consider two types of prior distributions on the parti-
tion: nonparametric ones as a Dirichlet process or a Gibbs-type process, and finite-
dimensional ones as a Pitman–Yor multinomial process or a normalized infinitely
divisible multinomial process.

2.2.2 Gibbs-type processes

Gibbs-type processes are a natural generalization of the Dirichlet process and Pitman–
Yor process (see for example De Blasi et al. 2015). Gibbs-type processes of type
σ ∈ (−∞, 1) can be characterized through the probability distribution of the in-
duced random ordered partition A ∈ Ak(n), which has the following form:

p(A) = p(n1, . . . , nk) = Vn,k
k!

k∏
j=1

(1− σ)nj−1, (2.2)

where (x)n = x(x + 1) · · · (x + n − 1) is the ascending factorial and (x)0 = 1 by
convention. Vn,k are nonnegative numbers that satisfy the recurrence relation:

Vn,k = (n− σk)Vn+1,k + Vn+1,k+1, V1,1 = 1. (2.3)

The probability distribution for the unordered partition Ã can be deduced from
(2.2) multiplying by k! to adjust for order: p(Ã) = Vn,k

∏k
j=1(1−σ)nj−1. Parameters

Vn,k admit the following form (see Pitman 2003; Gnedin and Pitman 2006):

Vn,k = σk

Γ(n− kσ)

∫ +∞

0

∫ 1

0
t−kσpn−kσ−1h(t)fσ((1− p)t)dtdp, (2.4)

with Γ the gamma function, fσ the density of a positive σ-stable random variable
and h a non-negative function. We limit ourselves to the case 0 < σ < 1.

Gibbs-type processes are a general class including the Dirichlet and Pitman–Yor
processes and some stable processes. The Pitman–Yor family can be defined by the
probability p in (2.2) with parameters

Vn,k =
∏k−1
i=1 (α + iσ)
(α + 1)n−1

,

where σ ∈ [0, 1) and α ∈ (−σ,∞). If σ = 0, we obtain the Dirichlet process for
which Vn,k = αk/(α)n.

The normalized generalized gamma process (NGG, Lijoi et al. 2007a) is another
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particular case of Gibbs-type processes, with parameters

Vn,k = eβσk−1

Γ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ

(
k − i

σ
; β
)
, (2.5)

where σ ∈ (0, 1), β > 0 and Γ(·; ·) is the following incomplete gamma function:
Γ(x; a) =

∫∞
x sa−1e−sds. If β = 0 we obtain the normalized σ-stable process. Fur-

thermore, if σ → 0, then we also recover the Dirichlet process (see Figure 2.1(a) for
a graphical representation of the relations between these BNP processes).

2.2.3 Finite-dimensional representations

Finite-dimensional representations for BNP priors have been developed to deal with
situations where the increase of the number of clusters with the sample size is un-
realistic, such as when an upper bound on the number of clusters is known. They
are convenient and tractable models that share many properties of their infinite-
dimensional counterparts, such as a clear interpretation of their parameters and
efficient sampling algorithms. They naturally approximate their associated non-
parametric priors as their dimension increases. See Figure 2.1(b) for a graphical
representation of the relations between these multinomial mixing measures.

Dirichlet multinomial process. The simplest example of such a finite-dimensional
representation is the Dirichlet multinomial distribution (see for instance Muliere and
Secchi 1995; Ishwaran and Zarepour 2000). A Dirichlet multinomial process with
concentration parameter α > 0, number of components K, and base measure H, is
a random discrete measure G = ∑K

k=1 wkδθk
characterized by a Dirichlet distribution

on the weights with parameter α/K: w1:K = (w1, . . . , wK) ∼ Dir(α/K, . . . , α/K)
and, as usual, location parameters θk are distributed according to the base measure
H. Muliere and Secchi (2003) proves that the Dirichlet multinomial process with
parameters α, K, and H approximates the Dirichlet process with parameters α and
H, in the sense of the weak convergence, when K → ∞. Recent works by Lijoi et
al. (2024); Lijoi et al. (2020) develop finite-dimensional versions of the Pitman–Yor
process and normalized random measures with independent increments (Regazzini
et al. 2003). The latter include the Dirichlet and normalized generalized gamma
multinomial processes as special cases.

Pitman–Yor multinomial process. The Pitman–Yor multinomial process is
based on the Pitman–Yor process. Fix some integer K ≥ 1, base measure H,
and parameters α, σ as in the Pitman–Yor process case above. The Pitman–Yor
multinomial process is defined by Lijoi et al. (2020) as a discrete random probability
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measure GK such that

GK | G0,K ∼ PY(σ, α;G0,K), G0,K = 1
K

K∑
k=1

δθ̃k
,

where θ̃k iid∼ H. For all A ∈ Ak(n), the partition distribution for the Pitman–Yor
multinomial process is:

p(A) =
(
K

k

)
1

(α + 1)n−1

∑
(ℓ1,...,ℓk)

Γ(α/σ + |ℓ(k)|)
σΓ(α/σ + 1)

k∏
i=1

C(ni, ℓi;σ)
Kℓi

, (2.6)

where k = |A| and the sum runs over the vectors ℓ(k) = (ℓ1, . . . , ℓk) such that
ℓi ∈ {1, . . . , ni} and |ℓ(k)| = ℓ1 + · · ·+ ℓk. Coefficients C(n, k;σ) are the generalized
factorial coefficients defined as

C(n, k;σ) = 1
k!

k∑
j=0

(−1)j
(
k

j

)
(−jσ)n (2.7)

As with the Pitman–Yor process, the random probability measureGK of the Pitman–
Yor multinomial process reduces to the Dirichlet multinomial process when σ = 0.
The Pitman–Yor multinomial process is thus a generalization of the Dirichlet multi-
nomial process. As the latter, the Pitman–Yor multinomial process approximates
the Pitman–Yor process, as the Pitman–Yor process is obtained as a limiting case
when K →∞ (see Theorem 5 in Lijoi et al. 2020). In addition, it is also more flexible
than the Dirichlet multinomial process. It can be used as an effective computational
tool in a nonparametric setting by replacing the stick-breaking construction in the
classic Gibbs sampler (see more details in Lijoi et al. 2020).

Normalized infinitely divisible multinomial process. Normalized infinitely
divisible multinomial (normalized infinitely divisible multinomial process (NIDM))
processes are introduced by Lijoi et al. (2024) and can be seen as a finite approxi-
mation for normalized random measures with independent increments (NRMI), see
for instance Regazzini et al. (2003); James et al. (2009). NIDM processes can be
described as NRMI measures using a hierarchical structure similar to the previous
section

GK | G0,K ∼ NRMI(c, ρ;G0,K), G0,K = 1
K

K∑
k=1

δθ̃k
,

where θ̃k iid∼ H a base measure. In this expression, ρ is a function that characterizes
the NRMI process used. The choice ρ(s) = s−1e−s corresponds to the Dirichlet
process. It yields the Dirichlet multinomial process whose distribution for all A ∈
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Gibbs NRMI

PY NGG

DP

“Multinomialization”−−−−−−−−−−−→

Weak limit as K→∞←−−−−−−−−−−−−

NIDM

PYM NGGM

DMP

(a) BNP processes (b) Multinomial processes

Figure 2.1: Graphical representation of the relationships between the discrete mix-
ing measures considered in this article. An arrow indicates that the target is a
special case of the origin. (a) BNP processes: Gibbs-type priors (Gibbs), normal-
ized random measures with independent increments (NRMI), Pitman–Yor process
(PY), normalized generalized Gamma process (NGG), and Dirichlet process (DP).
(b) Multinomial processes (finite-dimensional approximations of their respective
BNP counterparts in the left panel): normalized infinitely divisible multinomial
process (NIDM), Pitman–Yor multinomial process (PYM), normalized generalized
Gamma multinomial process (NGGM), Dirichlet multinomial process (DMP). Go-
ing from left to right can be done according to a “multinomialization” of the BNP
processes as described in Section 2.2.3, while the reverse direction is achieved by
taking a weak limit as K → ∞. Our contributions generalize results known for
mixing measures in red to mixing measures in green. The case of mixing measures
in gray remains an open problem.

Ak(n) is defined as

p(A) =
(
K

k

)
1

(α)n

k∏
j=1

(α/K)nj
, (2.8)

where k = |A|. Similarly, choosing ρ(s) = 1
Γ(1−σ)s

−1−σe−βs, 0 ≤ σ < 1 and β ≥ 0
amounts to considering a normalized generalized Gamma process (NGG) character-
ized by (2.5). We then get the normalized generalized Gamma multinomial process
(NGGM). In this case, for all A ∈ Ak(n) the probability is

p(A) =
(
K

k

) ∑
(ℓ1,...,ℓk)

Vn,|ℓ(k)|

K |ℓ(k)|

k∏
i=1

C(ni, ℓi;σ)
σℓi

, (2.9)

where k = |A| and C(n, k;σ) are defined in (2.7) and the sum over ℓ(k) = (ℓ1, . . . , ℓk)
is as in the PY case. Parameters Vn,k are defined in (2.5) for the particular case of
NGG processes, which depend on β and σ.

2.2.4 Posterior consistency

Posterior consistency is an asymptotic property of the posterior. As in frequentist
inference, we can consider that there exists a true value for the parameter of the
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distribution of the data. Then the posterior is said to be consistent if it converges
to the true parameter as the sample size increases to infinity.

More formally, given a prior distribution p on the parameter space Θ, we denote
by p(· | X1:n) the posterior distribution with X1:n a given sample of the data. The
posterior distribution is said to be consistent at θ0 ∈ Θ if p(U c | X1:n) −→

n→∞
0 in

Pθ0-probability for all neighborhoods U of θ0. For instance, in our case, we consider
mixture models for densities. In this type of model, the posterior density is said to
be consistent at fX0 if, for a distance d on the parameter space, p(d(f, fX0 ) ≥ ε |
X1:n) −→

n→∞
0 in PfX

0
-probability for all ε > 0. It is also possible to define posterior

consistency for quantities of interest such as the number of clusters. The posterior
number of clusters Kn is said to be consistent at K0 if p(Kn = K0 | X1:n) −→

n→∞
1 in

PfX
0

-probability.
A refinement in the study of posterior consistency is to evaluate the speed at

which a posterior distribution concentrates around the true parameter. The quantity
that measures this speed is called a posterior contraction rate. More formally, the
parameter space Θ is supposed to be a metric space with a metric d. A sequence
εn is a posterior contraction rate at the parameter θ0 with respect to the metric d if
for every Mn →∞, p(d(θ, θ0) ≥Mnεn | X1:n) −→

n→∞
0 in Pθ0-probability.

For more details on posterior consistency or contraction rates, the reader could
refer to Ghosal and van der Vaart 2017, Chapters 6 to 9.

2.3 Inconsistency results

In this section, we generalize the inconsistency results by Miller and Harrison (2014).
Under the context defined previously, Miller and Harrison (2014) states sufficient
conditions that imply posterior inconsistency of the number of clusters and also
proves that these conditions are satisfied for the Dirichlet process and Pitman–Yor
process mixture models. For completeness, we first recall here this inconsistency
result and then prove that it also applies to the different models introduced in
Section 2.2.

2.3.1 Inconsistency theorem of Miller and Harrison (2014)

The central result of Miller and Harrison 2014, Theorem 6 is reproduced below as
Theorem 2.1. This result depends on two conditions which are discussed thereafter.

We start with some notations. For A ∈ Ak(n), we define RA = ⋃
i:|Ai|≥2 Ai,

the union of all clusters except singletons. For index j ∈ RA, we define B(A, j)
as the ordered partition B ∈ Ak+1(n) obtained by removing j from its cluster Aℓ
and creating a new singleton for it. Then Bℓ = Aℓ \ {j}, and Bk+1 = {j}. Let
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ZA := {B(A, j) : j ∈ RA}, for n > k ≥ 1, we define

cn(k) := 1
n

max
A∈Ak(n)

max
B∈ZA

p(A)
p(B) ,

with the convention that 0/0 = 0 and y/0 =∞ for y > 0.

Condition 2.1. Assume lim supn→∞ cn(k) <∞, given some particular k ∈ {1, 2, . . .}.

Miller and Harrison (2014) show that this condition holds for any k ∈ {1, 2, . . .} for
the Pitman–Yor process, and thus for the Dirichlet process.

The second condition, named Condition 4 in Miller and Harrison (2014), con-
trols the likelihood through the control of single-cluster marginals. The single-cluster
marginal for cluster i is m(XAi

) =
∫

Θ

(∏
j∈Ai

f(Xj | θ)
)
π(θ)dθ. This condition in-

duces, for example, that as n → ∞, there is always a non-vanishing proportion of
the observations for which creating a singleton cluster increases its cluster marginal.
This condition only involves the data distribution and is shown to hold for several
discrete and continuous distributions, such as the exponential family (see Theorem
7 in Miller and Harrison 2014). In the following, we assume that this condition is
satisfied and mainly focus on Condition 2.1.

Theorem 2.1 (Miller and Harrison (2014)). Let X1, X2, . . . ∈ X be a sequence of
random variables and consider a partition-based model. Then, if Condition 4 from
Miller and Harrison (2014) holds, and Condition 2.1 above holds for any k ≥ 1, we
have for any k ≥ 1

lim sup
n→∞

p(Kn = k | X1:n) < 1 with probability 1.

As said previously, Condition 2.1 is only related to partition distribution, while
Condition 4 from Miller and Harrison (2014) only involves the data distribution
and single-cluster marginals. Hence, to generalize this inconsistency result to other
processes, it is enough to show that Condition 2.1 also holds for these different
processes. This is the focus of the next section, for Gibbs-type processes and finite-
dimensional discrete priors.

2.3.2 Inconsistency of Gibbs-type and multinomial processes

We extend the inconsistency result for all the processes introduced in Section 2.2 by
proving that Condition 2.1 holds.

Proposition 2.1 (Gibbs-type processes). Consider a Gibbs-type process with 0 ≤
σ < 1, then Condition 2.1 holds for any k ∈ {1, 2, . . .}, and so does the inconsistency
of Theorem 2.1.
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Proposition 2.2 (Multinomial processes). Consider any of the following priors:
Dirichlet multinomial process, Pitman–Yor multinomial process and normalized gen-
eralized gamma multinomial process, with K components. Then Condition 2.1 holds
for any k < min(n,K), and so does the inconsistency of Theorem 2.1.

The proofs of Propositions 2.1 and 2.2 are provided in Appendix 2.A. Note that
although the Dirichlet multinomial process is a particular case of the Pitman–Yor
multinomial process and the normalized generalized gamma multinomial process,
we include it as a separate case in the statement as the proof for this case differs
from the proofs for its generalizations.

More precisely, the proof as in Miller and Harrison (2014), Proposition 5 consists
in controlling the ratio of probability 1

n
p(A)/p(B), where B = B(A, j) is defined

in Section 2.3.1. For the Gibbs-type process, as the ratio of probability is raised by
(Vn,k/Vn,k+1), it is enough to show that the sequence (Vn,k/Vn,k+1)n≥1 is bounded.
Since there is no simple formula for Vn,k in the general case of the Gibbs-type process,
we prove this using a Laplace approximation. The idea of the original proof of Miller
and Harrison (2014) is the same but this ratio simplifies as they consider Pitman–Yor
process.

For the Pitman–Yor multinomial process and the NGG multinomial process, the
partition distribution depends on a sum over the vectors ℓ(k) = (ℓ1, . . . , ℓk) such that
ℓi ∈ {1, . . . , ni} and |ℓ(k)| = ℓ1 + · · · + ℓk. We write this sum as k different sums
over each ℓi. As in the nonparametric case, we consider the ratio of probability
1
n
p(A)/p(B). By definition of partition B, if j ∈ Ak then the sum over ℓk is

different for p(A) and p(B), one is of nk elements and the other of nk − 1 elements.
We separate the sum of nk elements into two sums, the first one of nk − 1 elements
and the second one of one element. In this way, we can use some known properties
of the generalized factorial coefficients and some specific properties of each process
to conclude.

The top row of Figure 2.2 illustrates Condition 2.1 for different partition dis-
tributions, such as the Dirichlet multinomial process (DMP), the Dirichlet process
(DP), the Gibbs-type process for the normalized generalized gamma process (NGG)
special case and the Pitman–Yor process (PY). In all these cases, we represent the
function cn(k) defined in Section 2.3 for different values of k, k ∈ {1, 10, 100}, with
n ∈ {1, . . . , 5000} and for some fixed parameters chosen such that E[K50] = 25. We
draw all the priors we considered for this choice of the parameters in Figure 2.2
bottom row. We also illustrate how the priors vary depending on n, fixing the priors
parameters such that E[K50] = 25 then we made n varying, n ∈ {50, 250, 1000}. In
Figure 2.2 top row, we can see n 7→ cn(k) function reaches a plateau, thus indicating
its boundedness for every process and values of k.
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Figure 2.2: (Top row) Illustrations of Condition 2.1, for k ∈ {1, 10, 100}: the func-
tion n 7→ cn(k) reaches a plateau for large values of n for a range of priors (see
infra).
(Bottom row) Prior probability on the number of clusters for different processes and
different values of n. In both rows, parameters are fixed such that E[K50] = 25: for
Dirichlet process DP(α = 19.2), for Pitman–Yor process PY(σ = 0.25, α = 12.2),
for NGG process NGG(σ = 0.25, β = 48.4) and for Dirichlet multinomial pro-
cess DMP(α = 22.5, K = 200). Illustrations are made using the package
GibbsTypePriors.

2.4 Consistency results

The previous results imply that the posterior distribution of the number of clus-
ters for some Bayesian nonparametric mixture models and some overfitted mixture
models is inconsistent and thus do not provide good estimates for the number of
components in a finite mixture. In these cases, the posterior distribution of the
number of clusters is not the relevant summary to consider. Instead, results by
Rousseau and Mengersen (2011); Nguyen (2013); Scricciolo (2014) suggest that it
might be better to focus on the latent mixing measure. In particular, recent works
on consistency can be extended to the models we consider. In this section, we con-
sider the framework of Rousseau and Mengersen (2011) for overfitted mixtures and
investigate to which extent it might apply to some models we have been consider-
ing, the Dirichlet multinomial process and Pitman–Yor multinomial process mix-
ture models. Moreover Guha et al. (2021) introduce a post-processing procedure,
the Merge-Truncate-Merge (MTM) algorithm, for which the output, the number of
clusters, is consistent. Guha et al. (2021) proved that this algorithm can be applied
to the Dirichlet process mixture model so that there is consistency for the number
of clusters after applying this algorithm. We extend this result and prove that we
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can apply the algorithm to overfitted mixture models and the Pitman–Yor process
mixture model.

2.4.1 Emptying extra clusters

Overfitted mixtures can be constructed based on the Dirichlet multinomial process
or the Pitman–Yor multinomial process. Rousseau and Mengersen (2011) show in
their Theorem 1 that overfitted mixtures, under some conditions on the kernel and
the mixture model, have the desirable property that in the mixing measure the
weights of extra components tend to zero as the sample size grows. This result only
concerns the weights and not the number of clusters, but a near-optimal posterior
contraction rate for the mixing measure can be deduced from it (see section 3.1 in
Guha et al. 2021). To be more precise, Rousseau and Mengersen (2011) consider a
prior p on the mixture weights w1:k written as follows

p(w1:k) = C(w1:k)wα1−1
1 · · ·wαk−1

k ,

with specific properties for the function C(w1:k) recalled in Condition 2.3. Two
types of prior hyper-parameter configurations are studied, which lead to opposite
conclusions: merging or emptying of extra components. Let d be the dimension of
the component-specific parameter θ. If αmax = maxj(αj) is such that αmax < d/2,
then the posterior expectation for the weights of the extra components tends to zero.
This is the case where extra components are emptied. The other case corresponds
to αmin = minj(αj) > d/2. In this case, the extra components are merged with non-
negligible weight, which means that they become identical to an existing component
and inadvertently borrow some of its weight. This case is less stable as there are
different merging possibilities. It is therefore preferable to choose parameters of the
prior that belong to the first case. The result stated in Theorem 1 in Rousseau and
Mengersen (2011), depends on five conditions. The first one, Condition 2.2 below,
is a posterior contraction condition on the mixture density. The following three
conditions, Condition 2.4, Condition 2.5, and Condition 2.6 in Appendix 2.B, are
standard conditions on the kernel density, respectively on regularity, integrability,
and strong identifiability. Finally, Condition 2.3 below represents a classic continuity
property for the prior density. More details on this result are provided in Appendix
2.B where the assumptions on the kernel are recalled and Theorem 1 of Rousseau
and Mengersen (2011) is stated.

To apply Theorem 1 in Rousseau and Mengersen (2011) to our case, as the kernel
is not the focus of this article, we only need to check the conditions on the mixture
model. We recall here these two conditions, Condition 2.2 and Condition 2.3, which
correspond to conditions respectively on the posterior contraction of the mixing
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measure and the prior density.

Condition 2.2 (Rousseau and Mengersen (2011), Assumption 1). There exists εn ≤
log(n)q/

√
n, for some q ≥ 0, such that

lim
M→∞

lim sup
n

{
En0
[
p(∥fX − fX0 ∥1 ≥Mεn | X1:n)

]}
= 0,

where fX0 is the true mixture density.

Condition 2.3 (Rousseau and Mengersen (2011), Assumption 5). The prior density
with respect to Lebesgue measure on the cluster-specific parameter θ is continuous
and positive on Θ, and the prior p on w1:K = (w1, . . . , wK) satisfies

p(w1:K) = C(w1:K)wα1−1
1 · · ·wαK−1

K ,

where C(w1:K) is a continuous function on the simplex bounded from above and from
below by positive constants.

Proposition 2.3. Assume that the kernel considered satisfies Conditions 2.4, 2.5,
and 2.6 (see Appendix 2.B). Let G be a Dirichlet multinomial process. Then, Con-
ditions 2.2 and 2.3 are satisfied, and Theorem 1 of Rousseau and Mengersen (2011)
holds.

The proof of this proposition can be found in Appendix 2.C. It relies on Theorem
4.1 from Rousseau et al. (2019) through which Condition 2.2 holds for mixture
models based on the Dirichlet multinomial process.This theorem gives a result on
density consistency for finite mixture models in the exact setting, which remains
true in the overfitted mixture case. The proof in Appendix 2.C consists mainly of
proving that Condition 2.3 holds for the different priors we consider.

We have also studied the Pitman–Yor multinomial process, which is an inter-
esting prior and a natural extension of the Dirichlet multinomial process. As an
overfitted mixture, it could be expected that the result in Rousseau and Mengersen
(2011) would also apply to this prior. However, even in the special case σ = 1

2
where a prior density for the weights is available in closed form, it can be proven
that Condition 2.3 will never be satisfied. More precisely, there exists no α1, . . . , αK

such that the function C(w1:K) defined in Condition 2.3 is bounded from above and
below by positive constants. Hence, the Rousseau and Mengersen (2011) framework
cannot provide any guarantee for the Pitman–Yor multinomial process. Refer to
Appendix 2.C for a detailed description.
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2.4.2 Merge-Truncate-Merge algorithm

We assume throughout this section as in Guha et al. (2021) that the parameter space
Θ is compact. We denote by Wr(·, ·) the Wasserstein distance of order r, r ≥ 1. We
recall in Theorem 2.2 the following result by Guha et al. (2021).

Theorem 2.2 (Guha et al. (2021), Theorem 3.2.). Let G be a posterior sample from
the posterior distribution of any Bayesian procedure, namely p(· | X1:n) such that
for all δ > 0

p (G : Wr(G,G0) ≤ δωn | X1:n)
pG0−→ 1,

with ωn = o(1) a vanishing rate, r ≥ 1. Let G̃ and K̃ be the outcome of the Merge-
Truncate-Merge algorithm (Guha et al. 2021) applied to G. Then the following holds
as n→∞:

(a) p(K̃ = K0 | X1:n) −→ 1 in PG0-probability.

(b) For all δ > 0, p(G : Wr(G̃, G0) ≤ δωn | X1:n) −→ 1 in PG0-probability.

The Merge-Truncate-Merge algorithm is described in Appendix 2.B.

Proposition 2.4 (Pitman–Yor process). Let G be a posterior sample from the pos-
terior distribution of a Pitman–Yor process mixture. Under conditions of Lemma
2.1, Theorem 2.2 applies to G.

Proposition 2.5 (Overfitted mixtures). Let G be a posterior sample from the poste-
rior distribution of an overfitted mixture. Under conditions of second-order identifi-
ability and uniform Lipschitz continuity of the kernel (Nguyen 2013; Ho and Nguyen
2016), Theorem 2.2 applies to G with r ≤ 2.

To prove Proposition 2.4, we introduce a lemma which derives from Theorem 1
in Scricciolo (2014). We assume a location mixture with a known scale parameter
τ0, as stated in Equation (2.14) in Appendix 2.B. The location parameter is uni-
variate, Θ ⊂ R. There are three standard conditions, described in Appendix 2.B
as Condition 2.9, Condition 2.10 and Condition 2.11, for the theorem. Condition
2.9 is a condition on the kernel density, Condition 2.10 is a tail condition on the
true mixing distribution, and Condition 2.11 is a condition on the base measure.
Theorem 1 from Scricciolo (2014) is also recalled in Appendix 2.B. To state the
lemma, we also need a condition on the kernel f(· | θ). We suppose that for some
constants 0 < ρ < ∞ and 0 < η ≤ 2, the Fourier transform f̂ of f(· | θ) satisfies
|f̂(t)| ∼ e−(ρ|t|)η .

Lemma 2.1. Assuming the model is a location mixture as in Equation (2.14), the
scale parameter τ0 is known and Θ ⊂ R is bounded. Under Conditions 2.9, 2.10,
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and 2.11, with G the posterior mixing measure of a Pitman–Yor process mixture
model, with σ ∈ [0, 1), then for every 1 ≤ r < ∞, there exists a sufficiently large
constant M and some 0 < η ≤ 2 such that

p(G : Wr(G,G0) ≥M log(n)−1/η | X(n))→ 0 in PG0-probability.

The proof of this lemma can be found in Appendix 2.C. This lemma is similar to
Corollary 2 from Scricciolo (2014) which applies to the special case of the Dirichlet
process. With this lemma, we can now prove Proposition 2.4.

Proof of Proposition 2.4. Theorem 2.2 holds when the posterior G is such that for
all δ > 0, there exists a vanishing rate ωn such that

p(G : Wr(G,G0) ≥ δωn | X1:n) −→ 0 in PG0-probability.

Under the conditions of Lemma 2.1, we have

p(G : Wr(G,G0) ≥M log(n)−1/η | X1:n)→ 0 in PG0-probability,

so that δωn = M (log(n))−1/η.
Hence, the consistency results of Theorem 2.2 hold for a Pitman–Yor process

mixture model satisfying the conditions of Lemma 2.1.

In the case of Proposition 2.5, we also need a contraction rate for the mixing
measure of overfitted mixture models. To ensure the existence of a contraction
rate, two conditions on the kernel are required. These conditions are described in
Appendix 2.B as Condition 2.7 and Condition 2.8. Let G be the mixing measure of
any overfitted mixture model. It is known that under some conditions on the kernel,
there exists a rate of contraction for G (see Equation (5) Guha et al. 2021),

p(G : W2(G,G0) ≳ (log(n)/n)1/4 | X1:n) −→ 0 in PG0-probability. (2.10)

This rate can be suboptimal for some overfitted mixture models but is sufficient to
prove Proposition 2.5.

Proof of Proposition 2.5. The proof of Theorem 2.2 is the same in the case of over-
fitted mixtures as in the Bayesian nonparametric case. This theorem holds when
the posterior G is such that for all δ > 0, there exists a vanishing rate ωn such that

p(G : Wr(G,G0) ≥ δωn | X1:n) −→ 0 in PG0-probability.

We use Equation (2.10) to conclude with δωn ≤ (log(n)/n)1/4 and r = 2.
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Hence, the consistency results of Theorem 2.2 hold for a Pitman–Yor process
mixture model satisfying the conditions of Lemma 2.1.

The work of Guha et al. (2021) can be applied to different Bayesian procedures.
The only condition is to have a contraction rate for the mixing measure under the
Wasserstein distance. However, this condition is not easy to prove, here we prove
it for the Pitman–Yor process but there is no direct generalization for Gibbs-type
processes. In the overfitted mixtures case, there is a general contraction rate for the
mixing measure under the Wasserstein distance (see Nguyen 2013; Ho and Nguyen
2016). This rate could be suboptimal for some procedures as it is an upper bound
but it guarantees the consistency of the Merge-Truncate-Merge algorithm.

2.5 Simulation study

We consider a simulation study to illustrate the three parts of our theoretical results
pertaining to (i) inconsistency of the posterior distribution of K̃n (Section 2.3.2),
(ii) emptying of extra clusters (Section 2.4.1), and (iii) the Merge-Truncate-Merge
algorithm (Section 2.4.2). We study the familiar case of a Dirichlet multinomial
mixture of multivariate normals. The simulated data was generated using a Gaussian
location mixture, with a parameter setting similar to the one of Guha et al. (2021)
for the Dirichlet Process. More precisely, we have K0 = 3 clusters and Gaussian
kernels such that:

fX0 (x) =
3∑
i=1

wiN (x | µi,Σ),

where w1:3 = (w1, w2, w3) are the weights, which we fix as w1:3 = (0.5, 0.3, 0.2), and
N(x | µi,Σ) is a multivariate Gaussian distribution with mean µi and covariance
matrix Σ. We considered the following parameters for the mean and the covariance
matrix:

µ1 = (0.8, 0.8), µ2 = (0.8,−0.8), µ3 = (−0.8, 0.8) and Σ = 0.05I2.

Here, the dimension of the kernel parameter θ = (µ,Σ) is d = 5 (2 for µ and 3 for Σ).
In this setting, we generated a sequence of datasets with n = {20, 200, 2000, 20000},
such that the smaller datasets are subsets of the larger ones. The number of com-
ponents of the Dirichlet multinomial process is set to K = 10, thus satisfying the
overfitted condition K ≥ K0. We chose the maximum parameter of the Dirichlet
distribution, ᾱ = α/K, according to the intuition of Rousseau and Mengersen (2011)
results. To obtain vanishing weights for extra components, the parameter ᾱ should
be less than d/2 = 2.5. We consider the following values: ᾱ ∈ {0.01, 1, 2.5, 3}. We
used the Markov chain Monte Carlo (MCMC) sampler proposed by Malsiner-Walli
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et al. (2016)∗. Although the proposed algorithm allows us to use a hyperprior on
the parameter α and shrinkage priors on the component means, we have used the
basic version with standard priors on parameters. See details on the number of
iterations and simulation practical information in Appendix 2.D. Two situations are
considered. In the first case, the prior expected number of clusters is fixed, which
leads to decreasing parameter α at a rate asymptotically equivalent to log(n)−1. In
the second case, we introduce a prior distribution on ᾱ.

Posterior inconsistency on Kn. In Figure 2.3, we present the posterior distri-
bution of the number of clusters for different values of parameter ᾱ and different
sizes of the dataset n. In addition, we present the prior distribution on the number
of clusters for the corresponding ᾱ and n. Table 2.2 summarizes the values of the
parameters ᾱ and sample sizes n used in the simulation study and displays the asso-
ciated prior and posterior expected number of clusters Kn. As proved in Proposition
2.2, the posterior distribution diverges with n. This lack of concentration is visible
for three of the considered values ᾱ ∈ {1, 2.5, 3} in our experiments. For ᾱ = 0.01,
the posterior distribution stays concentrated around the true value K0 = 3 for the
range of sample sizes n. Interestingly, Figure 2.3 makes it clear that the prior with
fixed ᾱ puts increasing mass towards Kn = 10 as the sample size grows, which is
probably one of the root causes for posterior inconsistency. Allowing ᾱ to vary, as
investigated on Figure 2.8, induces a much less informative prior on the number of
clusters and the posterior deterioration as the sample size grows appears much less
striking.

n
Prior E[Kn] Posterior E[Kn|X1:n]

ᾱ = 0.01 ᾱ = 1 ᾱ = 2.5 ᾱ = 3 ᾱ = 0.01 ᾱ = 1 ᾱ = 2.5 ᾱ = 3

20 1.3 6.9 7.9 8 2.8 4.9 5.9 6.0
200 1.5 9.6 9.9 9.98 3.04 6.9 9.5 9.7
2000 1.7 9.9 ≈ 10 ≈ 10 3.07 8.1 9.98 9.99
20000 1.9 9.99 ≈ 10 ≈ 10 3.01 8.7 ≈ 10 ≈ 10

Table 2.2: Prior and posterior expected number of clusters Kn for the various values
of ᾱ considered in our experiments.

Emptying of extra clusters. We are also interested to see how the posterior
distribution of the component weights behaves in our simulation setting. Figure 2.4
illustrates the posterior distribution of the weights of the components for different
specifications of the parameter ᾱ and n, and is similar to Figure 1 and Figure 2
in Rousseau and Mengersen (2011). In our case, we sort the weights in decreasing

∗The code is available at https://github.com/dbystrova/BNPconsistency.
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order to alleviate the label-switching problem. For the minimal values of ᾱ = 0.01,
we can see that the posterior weights with growing n are concentrated at the true
values of mixture weights, except the largest n. When ᾱ = 1, we can observe the
concentration trend, but convergence is slower than in the first case. For ᾱ = 2.5
there are no clear dynamics. And for ᾱ = 3 we can see that the weights become
more uniformly distributed, which can be related to the merging weights regime.
Specification of our simulation study does not allow to apply the Rousseau and
Mengersen (2011) theory directly, as in our case the support of θ is not bounded.
However, we can see that the simulation results are still consistent with the theory,
suggesting broader applicability.

Merge-Truncate-Merge. We applied the Merge-Truncate-Merge algorithm pro-
posed by Guha et al. (2021) to the posterior distribution of the mixing measure
in our simulation setting and illustrate the posterior distribution of the number of
clusters K̃ on Figure 2.5. To use the Merge-Truncate-Merge algorithm, we need to
know the Wasserstein convergence rates of the corresponding mixing measure. We
use the convergence rate for overfitted mixtures ωn = (log(n)/n)1/4 (Guha et al.
2021). Note that for this convergence rate the prior on the kernel parameters should
be bounded, which is not the case in our simulation (see details in Appendix 2.D), so
as in the previous section, we apply Merge-Truncate-Merge out of its theoretically
proven domain. The Merge-Truncate-Merge algorithm depends on the specification
of a positive scalar c. As there is no explicit guideline for computing c, we tested a
range of values c ∈ {0.1, 0.5, 1, 2}, see Figure 2.5. We can note that for each value of
n, there exists some value of c such that the posterior distribution of the number of
clusters remains concentrated around the true number of components K0 = 3. At
the same time, some values of c are too restrictive or do not eliminate extra clusters.
For example, c = 0.01 for ᾱ = 1 does not allow the number of components to be cor-
rectly estimated. Conversely, too large a value of c makes the Merge-Truncate-Merge
algorithm also fail in the sense that it outputs zero values for K̃. This is because
the second step in the algorithm truncates all clusters at once, which corresponds to
the case where the set A of the MTM algorithm recalled in Appendix 2.B is empty
and the set N contains everything. This suggests interpreting c as a regulariza-
tion parameter, with the estimated number of clusters decreasing with increasing c.
Following this intuition, we can draw (Figure 2.6) so-called “regularization paths”
plots for c. More specifically, they represent the posterior mean and maximum a
posteriori (MAP) for the posterior distribution of K̃ for a range of values [0, cmax]
for the parameter c, where cmax is defined as the value of c for which the number of
clusters given by the MTM algorithm K̃ is equal to 1. In other words, cmax coincides
with the value where all the clusters have been merged or truncated by the MTM
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post-procedure into a single cluster. We can see that for all specifications of param-
eter ᾱ for large n ≥ 2000, there always exists a region where the posterior mean
and the MAP remain approximately constant (exactly constant for the MAP). This
suggests a heuristic to use the Merge-Truncate-Merge algorithm: explore regularly
spaced values in [0, cmax] and look for a plateau. In the absence of a plateau, the
sample size should be increased.
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Figure 2.3: Prior and posterior distributions of the number of clusters Kn under a
Dirichlet multinomial process mixture with fixed parameter K = 10, and various
choices of ᾱ = α/K and n. The value ᾱ = 2.5 corresponds to Rousseau and
Mengersen (2011)’s threshold.
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Figure 2.4: Mixture weights under a Dirichlet multinomial process mixture with
fixed parameter K = 10, and various choices of ᾱ = α/K and n.
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Figure 2.5: Distribution of K̃, that is the posterior number of clusters after applying
the Merge-Truncate-Merge algorithm of Guha et al. (2021), with c parameter in
{0.1, 0.5, 1, 2}, under a Dirichlet multinomial process mixture with fixed parameter
K = 10, and various choices of ᾱ = α/K and n.

57



2.6. REAL-DATA ANALYSIS

2000 20000

20 200

0 1 2 3 4 5 0 1 2 3 4 5

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

c

K~

Distribution

MAP

Mean

n

n =  20

n = 200

n = 2000

n = 20000

2000 20000

20 200

0 1 2 3 4 0 1 2 3 4

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

c

K~

Distribution

MAP

Mean

n

n =  20

n = 200

n = 2000

n = 20000
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Figure 2.6: “Regularization path” for K̃, that is the posterior number of clusters
after applying the Merge-Truncate-Merge algorithm of Guha et al. (2021), with
parameter c in [0, cmax], under a Dirichlet multinomial process mixture with fixed
parameter K = 10, and various choices of ᾱ = α/K and n. The dotted dashed
curves represent the posterior mean while the solid curves represent the maximum
a posteriori (MAP) and the dotted horizontal line represents K0 = 3.

2.6 Real-data Analysis

We now consider the Sodium-Lithium Countertransport (SLC) dataset introduced
by Dudley et al. (1991). This dataset is composed of 190 individual measurements of
SLC level. This dataset was studied by Miller (2014) with a location-scale Gaussian
mixture of finite mixture (MFM) model. In the following, we consider the maximum
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a posteriori of the number of clusters found in Miller (2014) using MFM as ground
truth, hence the true number of components is assumed to be K0 = 2.

We used two different models to study this dataset: a Pitman–Yor process mix-
ture model with various values of α ∈ {0.01, 0.5} and σ ∈ {0.1, 0.25}, and a Dirichlet
multinomial process mixture model with K = 10 components and various choices
of parameter ᾱ = α/K ∈ {0.01, 0.5, 1, 2}. In both cases, we used a location-scale
mixture model described in detail in Appendix 2.E.

In Figure 2.7, we present the posterior distribution of the number of clusters
and the so-called “regularization paths” for the two models. More precisely, Figure
2.7 (a) presents the posterior distribution of the number of clusters for a Pitman–
Yor process mixture model. We used the marginal sampler from BNPmix package
proposed in Corradin et al. (2021). In Figure 2.7 (b), we illustrate the application
of the Merge-Truncate-Merge algorithm (MTM, Guha et al. 2021) to the posterior
distribution of the mixing measure for the Pitman–Yor process mixture model with
the “regularization paths” plots for the parameter c from the algorithm. It is worth
noticing that even if the contraction rate given in Lemma 2.1 is only valid for a
location mixture with the scaling parameter known, here we used this rate for a
location-scale mixture model as the scaling parameter is unknown. More precisely,
we used the rate of Lemma 2.1 with η = 2 as the kernel is Gaussian. In the
same way, in Figure 2.7 (c), we present the posterior distribution of the number
of clusters for a Dirichlet multinomial process mixture model with the number of
components K = 10 and various choices of parameter ᾱ. In Figure 2.7 (d), we
illustrate the application of the Merge-Truncate-Merge algorithm (Guha et al. 2021)
to the posterior distribution of the mixing measure for the Dirichlet multinomial
process mixture model with the “regularization paths” plots for the parameter c
from the algorithm.

For both models, in Figure 2.7 (a) and (c), the posterior distribution of the
number of clusters is not centered around the ground truth K0 = 2. This aligns
with the inconsistency results in Section 2.3. In Figure 2.7 (b), for each value of
α and σ a plateau can be observed on the true value K0 = 2 for the maximum a
posteriori as a function of the parameter c of the MTM algorithm. In Figure 2.7 (b)
and (d), the range of values for the parameter c is [0, cmax] where cmax is defined as in
Section 2.5, such that for the greater value of c K̃ is equal to 1. On the other hand,
c = 0 is such that only the first stage of MTM algorithm is performed, see Appendix
2.B for more details. In Figure 2.7 (d), the ranges of values for c are very small,
illustrating the fact that the first stage of the MTM algorithm alone already has a
very strong merging effect. Plateaus on the true value K0 = 2 for the maximum a
posteriori as a function of c can still be observed for ᾱ > 0.01. For ᾱ = 0.01, the
first stathe ge of MTM algorithm is not strong enough to find K̃ = 2 (finds K̃ = 3)
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2.6. REAL-DATA ANALYSIS
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Figure 2.7: (a) Prior and posterior distributions of the number of clusters Kn under
a Pitman–Yor process model with various choices of α and σ applied on the SLC
dataset. (b) Corresponding “regularization path” for K̃, that is the posterior number
of clusters after applying the Merge-Truncate-Merge algorithm of Guha et al. (2021),
with c parameter in [0, 6].
(c) Prior and posterior distributions of the number of clusters Kn under a Dirichlet
multinomial process mixture with fixed parameter K = 10, and various choices of
ᾱ = α/K applied on the SLC dataset. (d) Corresponding “regularization path” for
K̃, that is the posterior number of clusters after applying the Merge-Truncate-Merge
algorithm of Guha et al. (2021), with c parameter in [0, 0.12].
For (b) and (d) the dotted dashed curves represent the posterior mean while the
solid curves represent the maximum a posteriori (MAP). For (a) and (c) the solid
curves represent the posterior distribution of Kn while the dotted curves represent
the prior distribution. The dotted line represents K0 = 2.

60



CHAPTER 2. MIXTURE MODELS (IN)CONSISTENCY

and the second stage of the algorithm, which applies when c > 0, directly jumps to
one cluster K̃ = 1.

2.7 Discussion

We studied the finite and infinite mixture models with well-specified kernels applied
to data generated from a mixture with a finite number of components. In this setting,
we have proved that Gibbs-type process mixtures are inconsistent a posteriori for the
number of clusters. It is also the case for some finite-dimensional representations of
Gibbs-type priors such as the Dirichlet multinomial, Pitman–Yor multinomial and
normalized generalized gamma multinomial processes. However, we did not prove
inconsistency in general for NIDM (Lijoi et al. 2024). Further, we discussed the
different approaches to solving inconsistency problems for both finite and infinite
mixtures.

For overfitted mixtures, Rousseau and Mengersen (2011) prove that for some
parameter specifications, the weights for extra components vanish, but it does not
guarantee the posterior consistency of the number of clusters. We show that this
guides prior specification for some of the models that are inconsistent a posteriori,
such as overfitted mixtures based on the Dirichlet multinomial process. On the other
hand, we also proved that the Pitman–Yor multinomial process does not satisfied
the conditions of Theorem 1 in Rousseau and Mengersen (2011). When the Wasser-
stein convergence rate of the mixing measure is known, the Merge-Truncate-Merge
(MTM) algorithm proposed by Guha et al. (2021) allows obtaining a consistent
estimate of the number of components in Bayesian nonparametric and overfitted
mixtures. In particular, we showed that in contrast to the results of Rousseau
and Mengersen (2011), the Merge-Truncate-Merge algorithm can be applied to the
Dirichlet multinomial and Pitman–Yor multinomial processes without parameter
constraints. Moreover, we also proved that Merge-Truncate-Merge can be applied
to the Pitman–Yor process in the case of location mixtures.

Even if it seems possible to recover some consistency with, for example, the
Merge-Truncate-Merge procedure, our inconsistency results suggest that Gibbs-type
process mixture models face challenges when employed to estimate a finite number
of components. This can be related to the fact that this usage corresponds to model
misspecification, as these models assume an infinite number of components or a
number of clusters growing with the sample size. When it is known that the num-
ber of components is finite, we can also use a Mixture of Finite Mixtures which is
better specified for this case. MFM are consistent for the number of components as
proved in Guha et al. (2021). However, MFM are notoriously more computationally
challenging than Dirichlet process mixtures, for instance, when the number of com-
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ponents is large (see remark in Section 3.2 Guha et al. 2021). This might be a motiva-
tion to favour using misspecified Gibbs-type process mixture models in conjunction
with the Merge-Truncate-Merge algorithm for instance in place of MFM. However,
recent works introduced new samplers for MFM which appear more computationally
efficient than the usual ones (Miller and Harrison 2018; Frühwirth-Schnatter et al.
2021; De Blasi and Gil–Leyva 2023).

It is known that the Dirichlet process mixture model tends to create some extra
little clusters which are linked to the inconsistency result (see e.g. Miller and Harrison
2014, and references therein). To avoid these clusters, some authors propose to use
repulsive mixture models (see e.g. Petralia et al. 2012). Such models introduce a
dependence on the components to better spread them out in the parameter space.
Xie and Xu (2020) prove consistency for the density and the mixing measure for
repulsive mixture models with Gaussian kernel. As for the number of components,
no consistency is proven, but it is shown that some shrinkage effect occurs.

Another way to solve the inconsistency problem of the posterior number of clus-
ters in the Dirichlet process mixture is introduced by Ohn and Lin (2023). Their
solution is to make the concentration parameter α decrease when the sample size
increases. With this assumption, they obtain a nearly tight upper bound on the true
number of components through the posterior number of clusters. They also present
a simulation study showing posterior consistency for the number of components.
We can wonder if control over the concentration parameter α when the sample size
increases can allow posterior consistency for the number of components. Indeed,
Ascolani et al. (2022) proposes a way to control this parameter through a prior,
which gives consistency for the number of clusters for a Dirichlet process mixture.

We investigate empirically these two directions, with a simulation study for
Dirichlet multinomial mixtures where (i) we fix the expected number of clusters
a priori when the sample size increases, implying that α decreases (Figure 2.8 (a)
and (b)) and (ii) we use a Gamma prior on the concentration parameter (Figure 2.8
(c) and (d)) (see details in Appendix 2.D). As illustrated in Figure 2.8, the posterior
number of clusters in both cases seems to estimate the true number of components
well even for large sample sizes, and the posterior seems to be consistent. This
observation is corroborated by the posterior distribution of the weights shown in
Figure 2.8 (b) and (d). However, there are no theoretical guarantees for consistency
or inconsistency since the results of respectively Ohn and Lin (2023) and Ascolani
et al. (2022) do not apply in both cases. Although we cannot directly compare our
experimental results with results obtained by Ohn and Lin (2023) due to different
theoretical assumptions, we can note that the theoretical results obtained by Ohn
and Lin (2023) require that ᾱ decreases as n−a0 , where a0 > 0, which is faster than
the 1/ log(n) decrease induced by fixing the expectation. So, the obtained results
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suggest that a slower decrease rate for α might be enough to obtain consistency.
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(a) ᾱn : E[Kn] = 5 (b) ᾱn : E[Kn] = 5
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Figure 2.8: Dirichlet multinomial process mixtures varying concentration parameter
ᾱ. (a) and (b): ᾱ chosen such that E[Kn] = 5 for various choices of n. (c) and (d):
a Ga(a, bK) prior is used on ᾱ. (a) and (c): Prior and posterior distributions of the
number of clusters Kn. (b) and (d): Boxplots of mixture weights.

Another way to estimate the number of components is to use the approach
of Wade and Ghahramani (2018). This approach consists of a point estimation
of the partition of the data and is commonly used in practice. As it is widely
used in practice, it would be interesting to investigate the consistency in this case.
Chaumeny et al. (2022) investigates this question from a practical point of view,
using a simulation study, some positive results are found, but no theory is provided.

63



2.7. DISCUSSION

Bayesian nonparametric or overfitted mixtures are often used in practical appli-
cations. In our work, we showed that the number of clusters estimated using these
models is inconsistent for some of these models. We have also discussed possible
ways to obtain consistent estimates in practice, using either prior- or post-processing
procedures. However, throughout the paper, we considered a well-specified kernel
case, where the data is generated from the finite mixture of distributions that belong
to the considered kernel family. In practice, this condition can be easily violated,
and an interesting avenue of research would be to investigate misspecified settings.

Supporting Information

Additional information for this article is available online, consisting of the code used
for the simulations and the figures.
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2.A Proofs of the results of Section 2.3

Proof of Proposition 2.1. For all k ∈ {1, 2, . . .}, we want to prove that

lim sup
n→∞

cn(k) = lim sup
n→∞

1
n

max
A∈Ak(n)

max
B∈ZA

p(A)
p(B) <∞,

where ZA and Ak(n) are defined in Section 2.2.1.
So, it is sufficient to prove that for any fixed k, there exists a constant C such that
for any n, for all A ∈ Ak(n) and B = B(A, j) with j ∈ Aℓ, 1

n
p(A)
p(B) ≤ C.

We consider the Gibbs-type prior case with σ > 0, as case, σ = 0 is a Dirichlet
process and is already proven in Miller and Harrison (2014). As we are in the
Gibbs-type prior case, we have, for A ∈ Ak(n), p(A) = Vn,k

k!
∏k
i=1(1− σ)ni−1, and so

1
n

p(A)
p(B) = 1

n

Vn,k
k!

k∏
i=1

(1− σ)|Ai|−1
(k + 1)!
Vn,k+1

(
k+1∏
i=1

(1− σ)|Bi|−1

)−1

= k + 1
n

Vn,k
Vn,k+1

(1− σ + |Aℓ| − 2)︸ ︷︷ ︸
≤n

≤ Vn,k
Vn,k+1

(k + 1).

Therefore, we just have to prove that the sequence
(

Vn,k

Vn,k+1

)
n≥1

is bounded.

Using the recurrence relation (2.3), we have

Vn,k = Vn+1,k+1 + (n− σk)Vn+1,k ⇐⇒
Vn,k

Vn+1,k+1
= Vn+1,k+1

Vn+1,k+1
+ (n− σk) Vn+1,k

Vn+1,k+1

⇐⇒ Vn+1,k

Vn+1,k+1
=
(

Vn,k
Vn+1,k+1

− 1
)

1
n− σk

. (2.11)

We denote by fn(p, t) = t−σkpn−1−kσh(t)fσ(t(1 − p)) the integrand function of
Equation (2.4). From the definition of the Vn,k in (2.4), we can write

Vn+1,k

Vn,k
= 1
n− σk

∫∫
pfn∫∫
fn

.

Using again the recurrence relation (2.3), we have

Vn+1,k+1

Vn,k
= 1− (n− σk)Vn+1,k

Vn,k
.

Then, applying the Laplace approximation method twice and by setting (tn, pn) the
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mode of fn, we obtain as in Arbel and Favaro (2021)

Vn+1,k+1

Vn,k
= g(tn, pn) + o

( 1
n

)
, (2.12)

with g(tn, pn) = 1 − pn. Indeed, to use the Laplace approximation, we write the
integrand as fn = enℓn , then

Vn+1,k+1

Vn,k
=
∫∫
genℓn∫∫
enℓn

.

As the exponential term is the same in both integrands of this ratio, by applying
the Laplace approximation method to both integrals, we obtain

Vn+1,k+1

Vn,k
=
g(tn, pn) + a(tn, pn)/n+O

(
1
n2

)
1 +O

(
1
n

) ,

where a(tn, pn) is a second order term such that a(tn, pn) = o(1/n). Hence, the
previous ratio finally simplifies to (2.12).

Let φh(t) = −th′(t)/h(t), we can finally write using the partial derivatives above

Vn+1,k+1

Vn,k
= σk + φh(tn)
n+ φh(tn)− 1 + o

( 1
n

)
. (2.13)

Thus, if φh(tn) converges as n tends to infinity, we have that Vn+1,k+1
Vn,k

× n
σk
→ 1 as

n → ∞, so with the relation (2.11), Vn+1,k

Vn+1,k+1
−→
n→∞

1
σk

. If φh(tn) diverges as n tends
to infinity, we have that

lim
n→∞

Vn+1,k+1

Vn,k
=


1
c+1 if n

φh(tn) −→n→∞
c, c ∈ R,

0 if n
φh(tn) −→n→∞

±∞.

And then, using again (2.11), Vn+1,k

Vn+1,k+1
−→
n→∞

0. Hence,

lim
n→∞

Vn+1,k

Vn+1,k+1
=


1
σk

if φh(tn) converges,
0 if φh(tn) diverges.

Thus, the sequence
(

Vn,k

Vn,k+1

)
n≥1

is bounded and Condition 2.1 is satisfied.

Proof of Proposition 2.2. We consider A ∈ Ak(n) and B = B(A, j), and we assume
for simplicity, and without loss of generality, that the cluster in A which contains
the element j is the k-th cluster Ak. As in the previous proof, we want to bound the
ratio p(A)

p(B) for the three different partition probabilities considered in the proposition.
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First, we consider the Dirichlet multinomial process, which is a special case of the
Pitman–Yor multinomial process and normalized generalized gamma when σ = 0.
Then we consider the Pitman–Yor multinomial process and the normalized general-
ized gamma process with σ > 0.

(a) Dirichlet multinomial process: using (2.8), we have

1
n

p(A)
p(B) = 1

n

p(n1, . . . , nk)
p(n1, . . . , nk − 1, 1) .

So,

1
n

p(A)
p(B) = 1

n

(k + 1)!(K − k − 1)!∏k
j=1(c/K)nj

(c)n
k!(K − k)!∏k+1

i=1 (c/K)ni
(c)n

= (k + 1)(c/K + nk − 1)
n(K − k)c/K ≤ K(k + 1)

c(K − k) .

Thus, Condition 2.1 is satisfied for the Dirichlet multinomial process.

(b) Pitman–Yor multinomial process with σ > 0: we denote by qℓ(k) = ∏k
i=1 C(ni, ℓi;σ)/Kℓi .

Using (2.6), we have

1
n

p(A)
p(B) = 1

n

p(n1, . . . , nk)
p(n1, . . . , nk − 1, 1)

= (k + 1)!(K − (k + 1))!
nk!(K − k)!

∑
(ℓ1,...,ℓk)

Γ(α/σ+|ℓ(k)|)
σΓ(α/σ+1) qℓ(k)∑

(ℓ1,...,ℓk+1)
Γ(α/σ+|ℓ(k+1)|)
σΓ(α/σ+1) qℓ(k+1)

= k + 1
n(K − k)

∑
(ℓ1,...,ℓk−1)

∑nk
ℓk=1 Γ(α/σ + |ℓ(k)|) qℓ(k)∑

(ℓ1,...,ℓk−1)
∑nk−1
ℓk=1

∑1
nk+1=1 Γ(α/σ + |ℓ(k+1)|) qℓ(k+1)

= k + 1
n(K − k)

∑
(ℓ1,...,ℓk−1)

∑nk
ℓk=1 Γ(α/σ + |ℓ(k)|) qℓ(k)∑

(ℓ1,...,ℓk−1)
∑nk−1
ℓk=1

∑1
nk+1=1 Γ(α/σ + |ℓ(k+1)|) qℓ(k)

C(1,1;σ)
Kℓk+1

= K(k + 1)
nσ(K − k)

∑
(ℓ1,...,ℓk−1)

∑nk
ℓk=1 Γ(α/σ + |ℓ(k)|) qℓ(k)∑

(ℓ1,...,ℓk−1)
∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k)|+ 1) qℓ(k)

=: K(k + 1)
nσ(K − k)(R1 +R2).

We separate the sum over ℓk in the numerator in two, R1 corresponds to the first
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nk − 1 terms and R2 to the last one. We compute separately R1 and R2.

R1 =
∑

(ℓ1,...,ℓk−1)
∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k)|) qℓ(k)∑

(ℓ1,...,ℓk−1)
∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k)|+ 1) qℓ(k)

=
∑

(ℓ1,...,ℓk−1)
∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k)|) qℓ(k)∑

(ℓ1,...,ℓk−1)
∑nk−1
ℓk=1 (α/σ + |ℓ(k)|)Γ(α/σ + |ℓ(k)|) qℓ(k)

≤
∑

(ℓ1,...,ℓk−1)
∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k)|) qℓ(k)

(α/σ + k) ∑(ℓ1,...,ℓk−1)
∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k)|) qℓ(k)

≤ 1
α/σ + k

.

Using twice the fact that k 7→ C(n, k;σ) is non increasing for k ∈ {1, . . . , n} (see
Bystrova et al. 2021), so C(nk, 1;σ) ≥ C(nk, ℓk;σ) ≥ C(nk, nk;σ), and that Γ(α/σ+
|ℓ(k−1)|+ nk) ≤

∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k−1)|+ ℓk + 1), we obtain

R2 =
∑

(ℓ1,...,ℓk−1)
∑nk
ℓk=nk

Γ(α/σ + |ℓ(k)|) qℓ(k)∑
(ℓ1,...,ℓk−1)

∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k)|+ 1) qℓ(k)

=
∑

(ℓ1,...,ℓk−1) Γ(α/σ + |ℓ(k−1)|+ nk) qℓ(k−1)
C(nk,nk;σ)

Knk∑
(ℓ1,...,ℓk−1)

∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k−1)|+ ℓk + 1) qℓ(k−1)

C(nk,ℓk;σ)
Kℓk

≤ C(nk, nk;σ)
Knk

Knk−1

C(nk, 1;σ)

∑
(ℓ1,...,ℓk−1) qℓ(k−1)Γ(α/σ + |ℓ(k−1)|+ nk)∑

(ℓ1,...,ℓk−1) qℓ(k−1)
∑nk−1
ℓk=1 Γ(α/σ + |ℓ(k−1)|+ ℓk + 1)

≤ C(nk, nk;σ)
K C(nk, 1;σ) ≤

1
K
.

Finally, we have that

1
n

p(A)
p(B) = K(k + 1)

nσ(K − k)(R1 +R2) ≤
K(k + 1)
nσ(K − k)

(
1

α/σ + k
+ 1
K

)
.

So Condition 2.1 is satisfied for the Pitman–Yor multinomial process.

(c) Normalized generalized gamma multinomial process: using (2.9) and follow-
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ing the same way as for the Pitman–Yor case, we have

1
n

p(A)
p(B) = 1

n

p(n1, . . . , nk)
p(n1, . . . , nk − 1, 1)

= k + 1
n(K − k)

 ∑
(ℓ1,...,ℓk)

Vn,|ℓ(k)|

K |ℓ(k)|

k∏
i=1

C(ni, ℓi;σ)
σℓi

 ∑
(ℓ1,...,ℓk+1)

Vn,|ℓ(k+1)|

K |ℓ(k+1)|

k+1∏
i=1

C(ni, ℓi;σ)
σℓi

−1

= k + 1
n(K − k)

 ∑
(ℓ1,...,ℓk)

Vn,|ℓ(k)|

K |ℓ(k)|

k∏
i=1

C(ni, ℓi;σ)
σℓi

 ∑
(ℓ1,...,ℓk)

Vn,|ℓ(k)|+1

K |ℓ(k)|+1

k∏
i=1

C(ni, ℓi;σ)
σℓi

−1

=: K(k + 1)
n(K − k)(R1 +R2).

As in PYM (b) proof, we separate the sum over ℓk in the numerator in two, R1

corresponds to the first nk − 1 terms and R2 to the last one.
In the proof of Proposition 2.1, we have shown that the ratio

(
Vn,k

Vn,k+1

)
n≥1

is
bounded. Let B ∈ R⋆

+ denote an upper bound of this sequence. Then

R1 =
 ∑

(ℓ1,...,ℓk−1)

nk−1∑
ℓk=1

Vn,|ℓ(k)|

K |ℓ(k)|

k∏
i=1

C(ni, ℓi;σ)
σℓi

 ∑
(ℓ1,...,ℓk−1)

nk−1∑
ℓk=1

Vn,|ℓ(k)|+1

K |ℓ(k)|

k∏
i=1

C(ni, ℓi;σ)
σℓi

−1

≤ B

 ∑
(ℓ1,...,ℓk−1)

nk−1∑
ℓk=1

Vn,|ℓ(k)|

K |ℓ(k)|

k∏
i=1

C(ni, ℓi;σ)
σℓi

 ∑
(ℓ1,...,ℓk−1)

nk−1∑
ℓk=1

Vn,|ℓ(k)|

K |ℓ(k)|

k∏
i=1

C(ni, ℓi;σ)
σℓi

−1

≤ B.

Combining
V

n,|ℓ(k−1)|+nk

K|ℓ(k−1)|+nk
≤ ∑nk−1

ℓk=1
V

n,|ℓ(k)|+1

K|ℓ(k)|
with similar arguments to the bounding of

R2 term in pym (b) above yield R2 ≤ 1
σ

Finally, we obtain

1
n

p(A)
p(B) ≤

K(k + 1)(σB + 1)
nσ(K − k) ,

so Condition 2.1 is satisfied for the normalized generalized gamma multinomial pro-
cesses.

Hence, there is inconsistency in the sense of Theorem 2.1 for the Pitman–Yor
multinomial process, the Dirichlet multinomial process, and the NGGM process.

2.B Details on the results of Section 2.4

2.B.1 Theorem 1 of Rousseau and Mengersen (2011)

We recall the main result of Rousseau and Mengersen 2011, Theorem 1. This result
holds under some conditions on the mixture density, the kernel and the prior of
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the mixture model. Conditions 2.2 and 2.3, stated previously, are conditions on
the mixture density and on the prior density. Under the notations used here, we
stated the conditions on the kernel density, which need to have some regularity,
integrability and strong identifiability properties. As a reminder, θ1:K = (θ1, . . . , θK)
denotes the set of component parameters, w1:K = (w1, . . . , wK) denotes the weights
of the mixing measure, f(· | θi) denotes a component specific kernel density and
G = ∑

iwiδθi
denotes the mixing measure. We have data observations X1, . . . , Xn

assumed to be independent and identically distributed from a mixture model with
K0 components, where K0 < K:

fX0 (x) =
K0∑
k=1

w0
kf(x | θ0

k), θ0
k ∈ Θ.

Condition 2.4 (Rousseau and Mengersen (2011), Assumption 2). The kernel func-
tion θ̃ ∈ Θ → f(· | θ̃) is three time differentiable and regular in the sense that for
all θ̃ ∈ Θ the Fisher information matrix that is associated with f(· | θ̃) is positive
definite at θ̃. Denote by ∇f(x | θ) and D2f(x | θ) respectively the vector of the first
derivatives and the matrix of second derivatives of f(x | θ) with respect to θ. Denote
also by D(3)f(x | θ) the array whose components are ∂3f(x|θ)

∂θi1∂θi2∂θi3
.

For all i ≤ K0, there exists δ > 0 such that

∫
fX0 (x)

sup|θ0
i −θ|≤δ f(x | θ)3

inf |θ0
i −θ|≤δ f(x | θ)3 dx <∞,

∫
fX0 (x)

sup|θ−θ0
i |≤δ |∇f(x | θ)|3

inf |θ0
i −θ|≤δ f(x | θ)3 dx <∞,

∫
fX0 (x) |∇f(x | θ0

i )|4
fX0 (x)4 dx <∞,

∫
fX0 (x)

sup|θ−θ0
i |≤δ |D2f(x | θ)|2

inf |θ0
i −θ|≤δ f(x | θ)2 dx <∞,

∫
fX0 (x)

sup|θ−θ0
i |≤δ |D(3)f(x | θ)|2

inf |θ0
i −θ|≤δ f(x | θ) dx <∞.

Assume also that for all i = 1, . . . , K0, θ0
i ∈ int(Θ) the interior of Θ.

Condition 2.5 (Rousseau and Mengersen (2011), Assumption 3). There exists Θ0 ⊂
Θ satisfying λ(Θ0) > 0, where λ(A) denotes the Lebesgue measure of A, and for all
i ≤ K0,

d(θ0
i ,Θ0) = inf

θ∈Θ0
|θ − θ0

i | > 0,

and such that for θ ∈ Θ0 there exists a δ > 0,

∫
fX0 (x)f(x | θ)4

f0(x)4 dx <∞,
∫
fX0 (x) f(x | θ)3

sup|θ′−θ0
i |≤δ f(x | θ′)3 dx <∞, ∀i ≤ K0.

Condition 2.6 (Rousseau and Mengersen (2011), Assumption 4). For all ordered
partitions t of {1, . . . , K} in K0+1 clusters defined by the cardinality of each cluster,
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t = (ti)K0
i=0 with 0 = t0 < t1 < · · · < tK0 ≤ K, let (w, θ) = (w1, . . . , wK , θ1, . . . , θK)

and write (w, θ) as (ϕt, ψt), where

ϕt = ((θj)j=1,...,tK0
, (si)i=1,...,K0−1, (wj)j=tK0 +1,...,K) ∈ RdtK0 +K0+K+tK0 −1,

si = ∑ti
j=ti−1+1 wj − w0

i , i = 1, . . . , K0, and

ψt = ((qj)j=1,...,tK0
, θtK0 +1, . . . , θtK ), qi = wi/

ti∑
j=ti−1+1

wj, where i ∈ {ti−1+1, . . . , ti}.

We denote by gX(x) the density associated to the parameterization (ϕ0
t, ψt) of (w, θ).

Then

(ϕt − ϕ0
t)TgX

′ + 1
2(ϕt − ϕ0

t)TgX
′′(ϕt − ϕ0

t) = 0 ⇔

∀i ≤ K0, si = 0 and ∀j ∈ {ti−1 +1, . . . , ti}, qj(θj−θ0
j ) = 0, ∀i ≥ tK0 +1, wi = 0.

Assuming also that if θ ̸∈ {θ1, . . . θk} then for all functions h(· | θ) which are linear
combinations of derivatives of f(· | θ) of order less than or equal to 2 with respect to
θ, and all functions h1 which are also linear combinations of derivatives of f(· | θj),
j = 1, . . . , K, and its derivatives of order less than or equal to 2, then ah(· | θ) +
bh1(·) = 0 if and only if ah(· | θ) = bh1(·) = 0.

This last condition can be extended to the non-compact cases if Θ is not compact
as explained in Rousseau and Mengersen (2011).

We recall that d denotes the dimension of θ. Under the three conditions detailed
above, Condition 2.2 and Condition 2.3, we can state the main result in Rousseau
and Mengersen (2011) in the following theorem.

Theorem 2.3 (Rousseau and Mengersen (2011), Theorem 1). Under all the five
conditions recalled previously that the prior distribution satisfies, let SK be the set of
permutations of {1, . . . , K}, αmax = max(αj, j ≤ K) and αmin = min(αj, j ≤ K).

(i) If αmax < d/2, set ρ = [dK0 +K0 − 1 + αmax(K −K0)] /(d/2− αmax), then

lim
M→∞

lim sup
n

En0
p
min
σ∈SK

K∑
i=K0+1

wσ(i) > Mn−1/2 log(n)q(1+ρ)

∣∣∣∣∣∣X1:n


 = 0.

(ii) If αmin > d/2, set ρ′ = [dK0 +K0 − 1 + d(d−K0)/2] /(αmin − d/2)(K −K0),
then

lim
ϵ→0

lim sup
n

En0
p
min
σ∈SK

K∑
i=K0+1

wσ(i) < ϵ log(n)−q(1+ρ′)

∣∣∣∣∣∣X1:n


 = 0.
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2.B.2 Merge-Truncate-Merge Algorithm of Guha et al. (2021)

We recall the Merge-Truncate-Merge algorithm in Guha et al. (2021) used in Section
2.4.2. This algorithm is a post-processing procedure applied on a posterior sample
of the mixing measure G. Applying this algorithm, a posterior contraction rate for
the mixing measure under the Wasserstein metric, denoting ωn, is mandatory. More
precisely, we need G such that

p (G : Wr(G,G0) ≤ δωn | X1:n)
pG0−→ 1,

with ωn = o(1) a vanishing rate, r ≥ 1. We also need to choose a constant c used
in the second stage of the algorithm. There is no explicit way of choosing this
constant in Guha et al. (2021), we describe it as a regularisation parameter, which
we illustrate in figure 2.6.

Algorithm 1 Recall of Merge-Truncate-Merge Algorithm (MTM) (Guha et al.
2021)
Input: Posterior sample G = ∑

iwiδθi
, rate ωn, constant c.

Output: Discrete measure G̃ and its number of supporting atoms k̃.
{Stage 1: Merge procedure}

1: Reorder atoms {θ1, θ2, . . .} by simple random sampling without replacement with
corresponding weights {w1, w2, . . .}, let τ1, τ2, . . . denote the new indices and set
E = {τj}j as the existing set of atoms.

2: Sequentially for each index τj ∈ E , if there exists an index τi < τj such that
∥θτi
− θτj

∥ ≤ ωn, then update wτi
= wτi

+ wτj
, and remove τj from E .

3: Collect G′ = ∑
j: τj∈E wτj

δθτj
, write G′ as ∑i>1 qiδγi

so that q1 ≥ q2 ≥ · · · .
{Stage 2: Truncate-Merge procedure}

4: Set A = {i : qi > (cωn)r} and N = {i : qi ≤ (cωn)r}.
5: For each index i ∈ A, if there is j ∈ A such that j < i and qi∥γi−γj∥r ≤ (cωn)r,

then remove i from A and add it to N .
6: For each i ∈ N , find the atom γj among j ∈ A that is nearest to γi, update
qj = qj + qi.

7: Return G̃ = ∑
j∈A qjδγj

and K̃ = |A|.

As recalled in Theorem 2.2, Guha et al. (2021) prove that the output K̃ of the
MTM algorithm consistently estimates the number of clusters for any c > 0. This
result holds under the assumption that there exists a contraction rate for the mixing
measure. In order to have a contraction rate the kernel f(· | θ) needs to satisfy some
assumptions presented below.

Condition 2.7 (Second-order identifiability). The family of densities {f(· | θ), θ ∈
Θ} is identifiable in the second order if f(x | θ) is twice differentiable in θ and for
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any finite k different θ1, . . . , θk ∈ Θ, the equality

sup
x

∣∣∣∣∣∣
k∑
j=1

(αjf(x | θj) + βTj
∂f

∂θ
(x | θj) + γTj

∂2f

∂θ2 (x | θj)γj

∣∣∣∣∣∣ = 0

implies that αj = 0 ∈ R, βj = γj = 0 ∈ Rd for j = 1, . . . , k.

Condition 2.8 (Uniform Lipschitz-continuity). The family of densities {f(· | θ), θ ∈
Θ} is uniformly Lipschitz continuous up to the second order if there exists a positive
constant δ such that for any R > 0 ∥θ∥ ≤ R, γ ∈ Rd, θ1, θ2 ∈ Θ, there is a positive
constant C > 0 depending on R such that for all x ∈ X∣∣∣∣∣γT

(
∂2f

∂θ2 (x | θ1)−
∂2f

∂θ2 (x | θ2)
)
γ

∣∣∣∣∣ ≤ C∥θ1 − θ2∥δ1∥γ∥2
2.

For more details on these conditions and on contraction rate see Chen (1995);
Ho and Nguyen (2016).

2.B.3 Theorem 1 of Scricciolo (2014)

In Section 2.4, we introduce Lemma 2.1 which is a corollary of Theorem 1 in Scricci-
olo (2014). This theorem gives a posterior contraction rate for the mixing measure
of a Pitman–Yor mixture model relative to the Lp-metric. We detailed below the
conditions for this theorem and then we recalled the result.

Here, we assume that Θ ⊂ R. The model is less general than in the rest of the
paper, we assume that the model is a location mixture defined as:

fX(x) =
∫
f(x | θ, τ)G(dθ) =

∫
τ−1f((x− θk)/τ)G(dθ), (2.14)

where τ is a scale parameter and f(· | θ) = f(·) denotes the kernel density. In
this Section, we will assume that the scale parameter τ0 is known as the true scale
parameter τ0. This can also be seen as τ following the prior distribution δτ0 .

The theorem holds under three conditions on the kernel density, the true mixing
measure G0 and the base measure of the Pitman–Yor process.

Condition 2.9 (Scricciolo (2014), Assumption A1). The kernel probability density
f(· | θ) : R → R+ is symmetric around 0, monotone decreasing in |x| and satisfies
the tail condition f(x | θ) ≳ e−c|x|κ as |x| → ∞, for some constants 0 < c, κ <∞.

Condition 2.10 (Scricciolo (2014), Assumption A2). The true mixing measure G0

satisfies the tail condition G0(θ : |θ| > t) ≳ e−c0tϖ as t → ∞, for some constants
0 < c0 <∞ and 0 < ϖ ≤ ∞.
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Condition 2.11 (Scricciolo (2014), Assumption A3). The base measure P has a
continuous and positive density p′ on R such that p′(θ) ∝ e−b|θ|δ as |θ| → ∞, for
some constants 0 < b, δ <∞.

We also introduce the following set,

Aρ,η,L :=
{
f : R→ R+ | ∥f∥1 = 1,

∫
e2(ρ|t|)η |f̂(t)|2dt ≤ 2pL2

}
,

where f̂ denotes the Fourier transform of f and ρ, L, η are some positive constants.
We can now recall Theorem 1 from Scricciolo (2014). Here, we state a simplified

version of the theorem as we assumed the scale parameter to be known. The general
statement requires additional conditions on the scale parameter.

Theorem 2.4 (Scricciolo (2014), Theorem 1). Let f(· | θ) ∈ Aρ,η,L(R), 0 < ρ, η, L <

∞, be as in Condition 2.9. Suppose that the true mixture density fX0 , with

(i) G0 satisfying Condition 2.10 for some constants 0 < c0 <∞ and given num-
bers 0 < κ, η < ∞ ϖ be such that 0 < max

{
κ, [1 + ⊮(1,∞)(η)/(η − 1)]

}
≤

ϖ ≤ ∞.

Let G ∼ PY(α, σ;P ), with 0 ≤ σ < 1, −σ < α <∞ and a base measure P . Assume
that

(ii) P satisfies Condition 2.11 for constants 0 < b, δ < ∞, with δ ≤ ϖ when
ϖ <∞;

Then, the posterior contraction rate relative to the Lp-metric, 1 ≤ p ≤ ∞, denoted
by ωn,p, is n−1/2 log(n)µ, with a constant 0 < µ∞ possibly depending on p.

2.C Proofs of the results of Section 2.4

Proof of Proposition 2.3. In the Dirichlet multinomial process case, the prior on the
weights w1:K = (w1, . . . , wK) is a finite-dimensional Dirichlet distribution which is
of the form

p(w1:K) = Γ(α)
Γ(α/K)Kw

α/K−1
1 w

α/K−1
2 · · ·wα/K−1

K I(w1:K ∈ ∆K),

where ∆K denotes the K-dimensional simplex. So, the prior is of the same form as
in Condition 2.3 with C(w1:K) = Γ(α)/Γ(α/K)K I(w1:K ∈ ∆K) which is a constant
on the simplex. Condition 2.2 is verified using Theorem 4.1 from Rousseau et al.
(2019) which can also be applied to overfitted mixtures. Hence, the result Rousseau
and Mengersen (2011) applies in this case.
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In the Pitman–Yor multinomial case, the prior on the weights is a ratio-stable dis-
tribution defined in Carlton (2002) and denoted by w1:K ∼ RS(σ, α̃; 1/K, . . . , 1/K).
In the general case, no density is available so it is not possible to satisfy 2.3 and
the Rousseau et al. (2019) results cannot give us any guarantee. In the interesting
σ = 1/2 case, the density is

p(w1:K) = (1/K)K

p
K−1

2

Γ(α̃ +K/2)
Γ(α̃ + 1/2)

w
−3/2
1 · · ·w−3/2

K(
1

w1K2 + · · ·+ 1
wKK2

)α̃+K/2 I(w1:K ∈ ∆K).

To write this density in the form p(w1:K) = C(w1:K)∏K
i=1 w

αi−1
i we must set:

C(w) ∝
∏K
i=1 w

−αi−1/2
i(∑K

i=1 w
−1
i

)α̃+K/2

Condition 2.3 from requires C(w1:K) to be bounded above and below. A necessary
condition is obtained by studying the limit of C(w1:K) for any wi → 0 with the
others remaining bounded away from 0.

As wi → 0; C(w1:K) = O
(
w
α̃−αi+ K−1

2
i

)

For C(w1:K) to remain bounded above and below in this limit requires αi = α̃+ K−1
2 .

Enforcing this necessary condition for each αi independently requires rewriting C(w)
as:

C(w1:K) ∝
∏K
i=1 w

−(α+K/2)
i(∑K

i=1 w
−1
i

)α̃+K/2

∝ 1
(w1 · · ·wK)α̃+K/2 ×

(
w1 · · ·wK

w2 · · ·wK + w1w3 · · ·wK + · · ·+ w1 · · ·wK−1

)α̃+K/2

∝
(

1
w2 · · ·wK + w1w3 · · ·wK + · · ·+ w1 · · ·wK−1

)α̃+K/2

This quantity is bounded from below for all α̃ > 0, for any wi → 0 independently, but
not for two wi, wj → 0 at different rates, in which case all terms at the denominator
vanish and C(w1:K) diverges. We have found a set of necessary conditions which are
incompatible, hence there is no choice of αi such that Condition 2.3 can be satisfied,
and in this case too the Rousseau et al. (2019) results cannot give us any guarantee.

Proof of Lemma 2.1. This is a direct application of Corollary 1 from Scricciolo
(2014). To apply this corollary, we must check that the kernel f(· | θ) associ-
ated with the mixing measure G is a symmetric probability density such that, for
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some constants 0 < ρ < ∞ and 0 < η ≤ 2, the Fourier transform f̂ of f(· | θ)
satisfies:

|f̂(t)| ∼ e−(ρ|t|)η

as |t| → ∞.

This is satisfied by assumption. In Condition 2.9, the kernel f(· | θ) is assumed to
be symmetric, monotone decreasing in |x| and to satisfy a tail condition. The kernel
f(· | θ) also belongs to the set

Aρ,η,L :=
{
f : R→ R+ | ∥f∥1 = 1,

∫
e2(ρ|t|)η |f̂(t)|2dt ≤ 2pL2

}
,

where f̂ denotes the Fourier transform of f and ρ, L, η are some positive constants.
We also need to check that for a sequence ε̃n > 0 such that ε̃n → 0 as n → ∞

and nε̃2
n ≳ log(n)1/η, we have

p(BKL(fX0 ; ε̃2
n)) ≳ exp(−Cnε̃2

n) for some constant 0 < C <∞,

where BKL(fX0 ; ε2) :=
{
f :

∫
fX0 log(fX0 /f) ≤ ε2,

∫
fX0 (log(fX0 /f))2 ≤ ε2

}
denotes

Kullback–Leibler neighbourhoods of the true density fX0 . This condition is verified
in the second part of the proof of Theorem 1 in Scricciolo (2014).

2.D Details on the simulation study of Section 2.5

We consider the mixture model, with K = 10:

fX(x) =
K∑
k=1

wkf(x | µk,Σk).

Parameters have the following prior distributions:

(w1, . . . , wK) ∼ DirK(ᾱ, . . . , ᾱ), ᾱ = α/K,

µk ∼ N (b0, B0), k = 1, . . . , K,
Σ−1
k ∼ W(c0, C0), C0 ∼ W(d0, D0).

Parameters for Wishart distribution are defined as in Malsiner-Walli et al. (2016):
c0 = 2.5 + r−1

2 , d0 = 0.5 + r−1
2 , D0 = 100 d0

c0
diag(1/R2

1, . . . , 1/R2
r), and B0 =

diag(R2
1, . . . , R

2
r), where r is dimension of Σ matrix, and Rj is the range of the

data in each dimension. Parameter b0 is set to the median of the data.
We run two MCMC chains of 20 000 iterations each, with 10 000 burn-in itera-

tions. Convergence assessment was done through the calculation of Gelman-Rubin
diagnostics (Gelman and Rubin 1992) and visual inspection of the trace plots.
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We provide here some more details on Figure 2.8 in Discussion. Figure 2.8
illustrates two different cases where the parameter ᾱ is not fixed. First, we consider
the fixed prior expected number of clusters, such as E[Kn] = 5, which leads to
decreasing of the parameter ᾱ with n. Posterior distribution of the number of
clusters is presented in Figure 2.8 (a). The second approach consists in using the
hyperprior for parameter ᾱ. We consider ᾱ ∼ Ga(a, bK), where parameters a = 1,
b = 0.1 and K = 10 is the number of components, which leads to less informative
prior distribution of the number of clusters. This simulation setting is also different
from theoretical assumptions required by Ascolani et al. (2022).

2.E Details on the real-data analysis of Section
2.6

We consider two different mixture models in Section 2.6. The first one is of the
form:

fX(x) =
∫

Θ
f(x | θ)G(dθ),

where θk = (µk, σ̃2
k) and f(x | θ) = N (x | µ, σ̃2). Here, the mixing measure is

distributed as a Pitman–Yor process, G ∼ PY(α, σ;P ), where P is the base measure
defined hierarchically as the following:

σ̃2
k

iid∼ IG(a0, b0), k > 1,

µk | σ̃2
k

ind∼ N (m0, σ̃
2
k), k > 1.

IG denotes the Inverse-Gamma distribution. Parameters for the Inverse-Gamma
distribution are defined as the default values of the BNPmix package (see Corradin
et al. 2021): a0 = 2, b0 is set as the sample variance of the data and m0 as the sample
mean of the data. We used various values of α ∈ {0.01, 0.5} and σ ∈ {0.1, 0.25}

We run four MCMC chains of 20 000 iterations each, with 10 000 burn-in itera-
tions using the marginal sampler of the BNPmix package.

The second model is of the following form:

fX(x) =
K∑
k=1

wkN (x | µk, σ̃2
k),

with K = 10. In this case, the mixing measure is distributed as a Dirichlet multi-
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nomial process. The parameters have the following prior distributions:

(w1, . . . , wK) ∼ DirK(ᾱ, . . . , ᾱ), ᾱ = α/K,

µk ∼ N (b0, B0), k = 1, . . . , K,
σ̃2
k ∼ IG(c0, C0), C0 ∼ Ga(h0, H0).

The parameters for the Gamma distribution are defined as previously but in a
univariate form: c0 = 2.5, d0 = 0.5, D0 = 100 d0

c0 R2 , and B0 = R2 where R is the range
of the data. Parameter b0 is set to the median of the data. We used various values
of ᾱ = α/K ∈ {0.01, 0.5, 1, 2}.

We run two MCMC chains of 80 000 iterations each, with 30 000 burn-in itera-
tions. For both models, convergence assessment was done through the calculation of
Gelman–Rubin diagnostics (Gelman and Rubin 1992) and visual inspection of the
trace plots.
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Chapter 3

Pitman–Yor mixture models with
a prior on the precision
inconsistency in the number of
clusters

In Chapter 2, we first proved some inconsistency results for the number of
clusters of mixture models, and then studied some solutions to the incon-
sistency. In the same context, we studied the consistency of the number
of clusters of mixtures of the Pitman-Yor process with an a priori on the
precision parameter, which is motivated by results in Ascolani et al. (2022).
This Chapter is a joint work with Caroline Lawless, Julyan Arbel, and
Guillaume Kon Kam King. Caroline Lawless and I contributed equally to
this work. All authors contributed to the theoretical development of the
paper. I conducted the simulation study. Caroline Lawless wrote the first
draft, while all authors contributed to the writing of the final version. This
Chapter present a generalisation of the following paper:

C. Lawless, L. Alamichel, J. Arbel, and G. Kon Kam King (2023).
“Clustering inconsistency for Pitman–Yor mixture models with a prior
on the precision but fixed discount parameter”. In: Fifth Symposium
on Advances in Approximate Bayesian Inference
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Abstract Bayesian nonparametric (BNP) mixture models are widely used for han-
dling complex data. While considerable research has focused on establishing the
convergence of their posterior distributions to the true data-generating distribution
at the optimal minimax rate, it is important to note that the consistency of the
posterior distribution does not guarantee the consistency of the inferred number of
clusters. Until recently, there has been a lack of asymptotic guarantees regarding
the posterior number of clusters for these models.

Recent investigations have revealed that these models may exhibit inconsistency
in estimating the number of clusters. Although placing a prior on the concentra-
tion hyperparameter α, particularly in Dirichlet process mixture models, has been a
common strategy to address this issue, it has been found that Pitman–Yor process
mixture models can still suffer from inconsistency in the number of clusters, partic-
ularly in scenarios where the discount parameter σ is a fixed constant within the
range (0, 1). This work provides a rigorous proof of this inconsistency in Pitman–Yor
process mixture models under the condition of a fixed constant discount parameter
σ in the range (0, 1), despite the incorporation of a prior on α.

Keywords— mixture models, Bayesian nonparametric, number of clusters,
Pitman–Yor process.

3.1 Introduction

Mixture models, popular for their flexibility and simplicity, are commonly used in
the statistical analysis of heterogeneous data where observations are assumed to
come from an unknown number of different populations. Since in a mixture, each
observation is assumed to come from one population, such models naturally induce
a clustering: two data points belong to the same cluster if they come from the same
population. We focus on the problem of inferring the number of clusters in the data.

One solution is to fit mixture models with an increasing number of components
and select the best model using the Akaike information criterion (AIC), the Bayes
information criterion (BIC), etc. This method, however, may be computationally
expensive since many models must be fitted. A Bayesian approach could alterna-
tively be taken by putting a parametric prior (such as a Poisson) on the number
of components, but inference can be challenging when the dimensionality or the
amount of data becomes large (although new strategies have been proposed recently
Miller and Harrison (2018)).
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In this work, we consider infinite mixture models where the mixing measure is
modelled with a nonparametric prior. In such models, the number of components
possible has no upper bound. Inference may be performed in a unified way without
the need for strong assumptions on the number of components and with no need to
fit multiple models.

While the most standard nonparametric prior remains the Dirichlet process (DP)
introduced by Ferguson (1973), many extensions now exist. In this work, we focus on
the Pitman–Yor process (PY) (Pitman and Yor 1997), a natural extension of the DP
with an extra parameter increasing model flexibility. Compared with DP mixtures,
PY mixtures are better suited when the sizes of clusters are more evenly distributed.
Due to the interpretability of their hyperparameters, ease of implementation, and
nice mathematical properties, DP and PY priors are widely used in practice, and
in the last two decades a huge amount of research has focused on their properties
(see for example Ghosal and van der Vaart 2017; Müller et al. 2018). The use of
the DP as a mixing measure was first introduced by Lo (1984). Thanks to the wide
variety of efficient computational methods which have been introduced for their
inference (Escobar and West 1998; MacEachern and Müller 1998; Neal 2000; Blei
and Jordan 2006), nonparametric mixture models have become common in a wide
range of modeling applications.

In the context of density estimation, under certain conditions the posterior dis-
tribution of DP mixture models concentrates at the true data-generating density
at the minimax-optimal rate (Ghosal and van der Vaart 2017; Ghosal et al. 1999).
This holds for other types of Bayesian nonparametric priors, such as PY priors (Li-
joi et al. 2005). Nguyen (2013) further proved posterior consistency of the mixing
distribution in the Wasserstein metric DP mixture models.

It is important to realize that consistency of the posterior distribution for the
data-generating density and even for the mixing measure does not imply consistency
of the inferred number of clusters. Empirically, many researchers have observed
that DP mixture posteriors tend to overestimate the number of clusters (West and
Escobar 1993; Lartillot and Philippe 2004; Onogi et al. 2011). More recently, Miller
and Harrison (2013); Miller and Harrison (2014) proved non-consistency for the
number of components in DP and PY mixtures. Alamichel et al. (2024) extended this
result to the case of Gibbs-type processes and finite-dimensional representations of
Bayesian nonparametric (BNP) priors. A possible explanation for this inconsistency
result can be found in a result proved by Rousseau and Mengersen (2011), that in
overfitted finite or infinite mixture models, the weight attributed to extra cluster
goes to zero as the number of observations grows. Provided that the weights for
the extra components are infinitesimally small, any mixture can be approximated
arbitrarily well by a mixture with a larger number of components.
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Despite the above inconsistency results, it can be possible to achieve posterior
consistency for the number of clusters in the mixture models we consider. Guha
et al. (2021) introduce a fast and simple post-processing procedure for DP mixtures
which provides clustering consistency. Zeng et al. (2023) introduce a quasi-Bernoulli
stick-breaking process and prove posterior consistency for the number of clusters in
the associated mixture model. Consistency in this class of BNP priors requires
the prior to be calibrated based on the sample size, hence the model is no longer
projective. Ascolani et al. (2022) show that posterior consistency for the number
of clusters can be achieved for a projective model by putting a prior on the DP
concentration parameter α. DP mixtures modeled in this way can be considered as
mixtures of DP mixtures (Antoniak 1974) and are commonly used in practice.

We show that Ascolani et al. (2022)’s result cannot be directly extended to PY
mixtures: we prove clustering inconsistency for Pitman–Yor process mixture models
with a prior on the concentration parameter when the discount parameter σ ∈ (0, 1)
is a fixed constant.

3.2 Notations

We assume that data X1:n ∈ X n is generated by a mechanism of the following form:

Xi
iid∼ fX(·) =

t∑
j=1

wjf(· | θ⋆j ), (3.1)

where the wj are probability weights in (0, 1) summing to one, and where the f(· | θ⋆j )
are probability kernels, each depending on some parameter θ⋆j . The above may
alternatively be expressed as a convolution of the component-specific kernel f(· | θ)
with the discrete mixing measure G = ∑t

j=1 wjδθ⋆
j
:

fX(x) =
∫
f(x | θ)G(dθ).

We consider the well-specified case where the kernel density f(· | θ) is known,
but where the integer t, the weights wj, and the latent variables θ⋆j in Equation
(3.1) are all unknown. To allow for an unbounded number of components t in the
mixture, we consider nonparametric mixture models with nonparametric priors on
the mixing measure G.

Ascolani et al. (2022) consider Dirichlet process mixture models with a prior on
the concentration parameter α:

Xi | θi
ind∼ f(· | θi), θi | G

iid∼ G, G | α ∼ DP(α,H), α ∼ π, (3.2)
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where π is a prior distribution on α, and H is the DP base measure with a density
h.

We consider an extension of Ascolani et al. (2022)’s model, which are Pitman–
Yor mixture models with a prior π on the concentration parameter α > 0 and with
a fixed discount parameter σ ∈ (0, 1):

Xi | θi
ind∼ f(· | θi), θi | G

iid∼ G, G | α, σ ∼ PY(α, σ,H), α ∼ π. (3.3)

For every pair of numbers (n, s) ∈ N2 with s ≤ n, we let As(n) denote the set
of partitions of {1, . . . , n} into s non empty subsets. Conditional on parameters α
and σ, a Pitman–Yor mixture model induces the following prior distribution on the
space of partitions on n, for any n ∈ N, and any A = {A1, . . . , As} ∈ As(n), s ≤ n,

p(A | α, σ) =
σs−1(1 + α

σ
)(s−1)

(1 + α)(n−1)

s∏
j=1

(1− σ)(nj−1), (3.4)

where α(n) = α · · · (α + n − 1) is the ascending factorial and nj = |Aj| stands
for the cardinality of the set Aj. Conditionally on the partition A, the probability
distributions of the data X1:n = (X1, . . . , Xn) and of the cluster-specific parameters
θ̂1:s = (θ̂1, . . . , θ̂s) are

p(X1:n | θ̂1:s, A) =
s∏
j=1

∏
i∈Aj

f(Xi | θ̂j), p(θ̂1:s | A, θ) = p(θ̂1:s | A) =
s∏
j=1

h(θ̂j).

We use the standard notation Kn to denote the number of clusters in a sample
of size n. The concentration parameter α essentially controls the prior mean of Kn,
while the discount parameter σ has more impact on the variance (Bystrova et al.
2021). More specifically, the prior number of clusters is known to grow asymptoti-
cally with n as a power-law, e.g. in expectation we have E[Kn] ∼ Γ(α+1)

σΓ(α+σ)n
σ when

n → ∞ (see Section 3.3 of Pitman 2006). Under our model (3.3), Kn has the
following prior distribution

p(Kn = s | σ) =
∫ ∑

A∈As(n)
p(A | α, σ)π(dα)

where p(A | α, σ) is as above.
To study the asymptotic behaviour of the number of clusters, we consider p(Kn =

s | X1:n, σ). We start with the joint distribution (X1:n, Kn | σ) which, for every
x1:n = (x1, . . . , xn) ∈ X n, is given by:

p(X1:n = x1:n, Kn = s | σ) =
∑

A∈As(n)
p(A | σ)

s∏
j=1

m(xAj
)
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where p(A | σ) =
∫
p(A | α, σ)π(dα) and m(xAj

) =
∫ ∏

i∈Aj
f(xi | θ)h(θ)dθ is the

marginal likelihood for the subset of observations identified by Aj, given that they
are clustered together.

3.3 Theoretical result

Condition 4 from Miller and Harrison (2014) is required. This assumption controls
the likelihood through the single-cluster marginals. Introducing

φs(x1:n, c) := min
A∈As(n)

1
n
|SA(x1:n, c)| ,

where SA(x1:n, c) is the set of indices j ∈ {1, . . . , n} such that the part Aℓ contain-
ing j satisfies m(xAℓ

) ≤ cm(xAℓ\j)m(xj), i.e. the set of observations for which the
marginals of the new clusters obtained after taking out that observation and creat-
ing a new singleton cluster dominates the marginal of the original cluster up to a
constant c.

Assumption 3.1 (Condition 4 of Miller and Harrison (2014)). Given a sequence of
random variables X1, X2, . . . ∈ X , and s ≥ 1, assume

sup
c∈[0,∞)

lim inf
n→∞

φs(X1:n, c) > 0 a.s.

This condition induces, for example, that as n → ∞, there is always a non-
vanishing proportion of the observations for which creating a singleton cluster in-
creases its cluster marginal. This condition only involves the data distribution and
is shown to hold for several discrete and continuous distributions, such as the expo-
nential family (see Theorems 7 and 8 in Miller and Harrison (2014)).

Theorem 3.1. Suppose that the prior π over the concentration parameter α is
proper. If Condition 4 of Miller and Harrison (2014) recalled above holds, for every
G as in (3.1), we have for any t ∈ N,

p(Kn = t | X1:n) ̸→ 1 as n→∞.

The proof of Theorem 3.1 rests on analysing the ratio p(Kn=s|X1:n)
p(Kn=t|X1:n) for a fixed

t ∈ N, as consistency cannot hold if it does not converge to 0 as n→∞. Following
the strategy of Ascolani et al. (2022), this ratio can be split into the product of two
quantities, one capturing the impact of the prior distribution on the concentration
parameter α, and the other independent of the prior on α. In the Dirichlet process
case with a prior on α, the first quantity goes to 0 and the second remains bounded.
We show that in the Pitman–Yor case, the σ parameter enters the first quantity
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and prevents it from vanishing as n → ∞, destroying consistency and highlighting
a fundamental difference between the DP and PY processes.

3.4 Proof of Theorem 3.1

The proof of our result relies on the following simple lemma, used by and proved
by Ascolani et al. (2022). It justifies working with ratios, which allows us to avoid
calculations of marginal likelihoods of the observed data.

Lemma 3.1. The convergence p(Kn = t | X1:n)→ 1 as n→∞ holds if and only if
one has

∑
s ̸=t

p(Kn = s | X1:n)
p(Kn = t | X1:n) → 0 as n→∞.

Proof of Theorem 3.1. We fix t ∈ N. By Lemma 3.1, it will be sufficient to prove
that p(Kn=s|X1:n)

p(Kn=t|X1:n) ̸→ 0 as n→∞, for some s. We will prove this using s = t+ 1.
In order to prove our result, we make use of similar notations as in Ascolani et al.

(2022) for the Dirichlet process mixture model. Throughout this proof we will use
the subscript PY to indicate that a quantity is related to the Pitman–Yor model.

Under our Pitman–Yor mixture model, by applying Equation (3.4), we have

p(Kn = s | X1:n)
p(Kn = t | X1:n) =

∫
σs−1

(
1 + α

σ

)
(s−1)

π(α)
(1+α)(n−1)

dα∫
σt−1

(
1 + α

σ

)
(t−1)

π(α)
(1+α)(n−1)

dα

∑
A∈As(n)

∏s
j=1(1− σ)(aj−1)m(XAj

)∑
A∈τt(n)

∏t
j=1(1− σ)(aj−1)m(XAj

)

=: CPY(n, t, s)RPY(n, t, s)

where

CPY(n, t, s) =

∫
σs−1

(
1 + α

σ

)
(s−1)

π(α)
(1+α)(n−1)

dα∫
σt−1

(
1 + α

σ

)
(t−1)

π(α)
(1+α)(n−1)

dα

and
RPY(n, t, s) =

∑
A∈As(n)

∏s
j=1(1− σ)(aj−1)m(XAj

)∑
A∈τt(n)

∏t
j=1(1− σ)(aj−1)m(XAj

) .

Since our expression RPY(n, t, s) above does not depend on α, it is identical to
the corresponding expression in the setup of Miller and Harrison (2014), who prove
that it does not converge to zero as n → ∞. Finer bounds can be found in Yang
et al. (2020). What is left to show is that our expression CPY(n, t, s) above does not
converge to zero as n→∞.
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Taking s = t+ 1, we then have for a fixed value of n,

CPY(n, t, t+ 1) =

∫
σt
(
1 + α

σ

)
(t)

π(α)
(1+α)(n−1)

dα∫
σt−1

(
1 + α

σ

)
(t−1)

π(α)
(1+α)(n−1)

dα

= σ

∫ (
t+ α

σ

) (
1 + α

σ

)
(t−1)

π(α)
(1+α)(n−1)

dα∫ (
1 + α

σ

)
(t−1)

π(α)
(1+α)(n−1)

dα

= tσ +

∫
α
(
1 + α

σ

)
(t−1)

π(α)
(1+α)(n−1)

dα∫ (
1 + α

σ

)
(t−1)

π(α)
(1+α)(n−1)

dα

≥ tσ,

as the second term of the sum is the integral of a product of positive terms.
Finally, as CPY(n, t, t + 1) ≥ tσ > 0, limn→∞ CPY(n, t, t + 1) > 0, hence the

result.

3.5 Simulation study

We illustrate our results through a simulation study. Data is generated using a
Gaussian location mixture with K0 = 3 components: P (x) = ∑3

i=1 piN (x | µi,Σ),
where p = (p1, p2, p3) = (0.5, 0.3, 0.2) and N (x | µi,Σ) is a multivariate Gaussian
with mean µi and covariance matrix Σ with µ1 = (0.8, 0.8), µ2 = (0.8,−0.8), µ3 =
(−0.8, 0.8) and Σ = 0.05 I2. We adapt the Importance Conditional Sampler for
PY mixtures of Canale et al. (2022), with the following prior specification:

G ∼ PY(α, σ,H), µi ∼ N (b0, B0), i = 1, . . . , t,
Σ−1 ∼ W(c0, C0), C0 ∼ W(d0, D0).

The Wishart prior on Σ−1 and the prior on µi are the same as in Malsiner-Walli
et al. (2016). We run four Markov chain Monte Carlo (MCMC) chains of 22 000
iterations each, with 20 000 burn-in iterations.

We have proved inconsistency for the number of clusters when fitting Pitman–Yor
mixture models with a prior on the concentration parameter α and fixed discount
parameter σ. Figure 3.1 illustrates this result for varying values of σ and different
parameters on the prior on α. In Figure 3.1, we can observe that as n increases
in each scenario, the posterior distribution of the number of cluster Kn does not
concentrate on the true value K0 = 3.

While our result is limited to the setting where the discount parameter σ is kept
fixed, it is common in practice to put a prior on both PY parameters α and σ in
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Figure 3.1: Posterior distribution of the number of clusters Kn under a Pitman–Yor
process mixture for various choices of n ∈ {20, 200, 2000, 20000} and with different
values of the fixed parameter σ ∈ {0.1, 0.5} and parameters of the Gamma prior on
α. The dotted line represents the true number of components K0 = 3.

PY mixture models. This situation is the subject of current investigations.
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3.6 Discussion

We have proved inconsistency for the number of clusters when fitting single-component
mixtures with Pitman–Yor mixture models with a prior on the concentration pa-
rameter α and fixed discount parameter σ. Our result holds when the true number
of clusters in the data-generating mechanism is one. While hinting at what to ex-
pect, further study would be needed to fully understand clustering consistency for
a data-generating mechanism with an arbitrary number of components.

While our result is limited to the setting where the discount parameter σ is kept
fixed, it is common in practice to put a prior on both PY parameters α and σ in
PY mixture models. Normalized-stable priors are the limiting case of Pitman–Yor
priors as the parameter α goes to 0. Consequently, the study of the normalized-
stable process mixture model with a prior on the parameter σ could constitute a
first step in the study of the PY mixture model with a prior on σ.

Another interesting extension of this work would be to look at the Dirichlet
multinomial process mixture model with a prior on the parameter α. Dirichlet
multinomial process priors are the finite version of DP priors, useful in situations
where there is some known upper bound K on the number of clusters (see Ishwaran
and Zarepour 2000; Muliere and Secchi 1995). The Dirichlet process is recovered in
the limit as the parameter K goes to infinity. We can then expect a similar behavior
as the one proved by Ascolani et al. (2022) in the Dirichlet process case. While no
theoretical results have yet been proven, simulation studies of Alamichel et al. (2024)
(see Chapter 2 Section 2.7) suggest that clustering consistency is indeed achieved in
the case of Dirichlet multinomial mixture models.
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Chapter 4

Species Sensitivity Distribution
revisited: a Bayesian
nonparametric approach

The first part focused on some theoretical aspects of clustering with
Bayesian nonparametric mixture models. In this second part, we used a
similar model to assess some ecological risk.
This Chapter is a joint work with Julyan Arbel, Guillaume Kon Kam King
and Igor Prünster. Julyan Arbel, Guillaume Kon Kam King and Igor Prün-
ster proposed the model, Guillaume Kon Kam King conducted the simula-
tion study and real-data analysis on the model. I joined the project later
and conducted the clustering analysis. I also created the Shiny applicaation
provided with the paper. All authors contributed to the writing of the final
version. This Chapter is based on the following recently submitted paper:

L. Alamichel, J. Arbel, G. Kon Kam King, and I. Prünster (2024+).
Species Sensitivity Distribution revisited: a Bayesian nonparametric
approach. Submitted
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Abstract We present a novel approach to ecological risk assessment by reexamin-
ing the Species Sensitivity Distribution (SSD) method within a Bayesian nonpara-
metric framework. Widely mandated by environmental regulatory bodies globally,
SSD has faced criticism due to its historical reliance on parametric assumptions
when modeling species variability. By adopting nonparametric mixture models, we
address this limitation, establishing a more statistically robust foundation for SSD.

Our Bayesian nonparametric approach offers several advantages, including its
efficacy in handling small datasets typical of ecological risk assessment and its abil-
ity to provide principled uncertainty quantification alongside simultaneous density
estimation and clustering. We utilize a specific nonparametric prior from the class of
normalized random measures with independent increments as the mixing measure,
chosen for its robust clustering properties—a crucial consideration given the lack of
strong prior beliefs about the number of components among SSD practitioners.

Notably, we extend our mixture model to accommodate censored data, which are
common in ecotoxicology studies. Through systematic simulation studies and anal-
ysis of real datasets, we demonstrate the superiority of our Bayesian nonparametric
SSD over classical normal SSD and kernel density estimate SSD methods.

Moreover, we exploit the inherent clustering structure of the mixture model to
explore patterns in species sensitivity. Our findings underscore the effectiveness of
our approach in improving ecological risk assessment methodologies.

Keywords— Bayesian Nonparametrics; Critical Effect Concentration; Ecolog-
ical Risk Assessment; Ecotoxicology; Hazardous Concentration; Mixture Models.
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4.1 Introduction

4.1.1 Background

Assessing the response of a community of species to environmental stress is criti-
cal for ecological risk assessment. Methods developed for this purpose vary greatly
in levels of complexity and realism. Species Sensitivity Distribution (SSD) repre-
sents an intermediate tier method, more refined than rudimentary assessment factors
(Posthuma et al. 2002) but practical enough to be used routinely by environmental
managers and regulators in most developed countries (Australia and New Zealand,
ANZECC (2000), Canada, CCME (2007), China, Liu et al. (2014), EU, ECHA
(2008), South Africa, Roux et al. (1996), USA, USEPA (1998)). The SSD approach
is intended to provide, for a given contaminant, a description of the tolerance of all
species possibly exposed using information collected on a sample of species. This in-
formation consists of Critical Effect Concentrations (CECs), a concentration specific
to a species that marks a limit over which the species suffers a critical level of effect.
Such levels of effect are for instance the concentration at which 50% of the tested or-
ganisms died, referred to as Lethal Concentration 50% (LC50), or the concentration
which inhibited growth or reproduction by 50% compared to the control experiment,
referred to as Effect Concentration 50% (EC50). Each CEC is the summary of costly
bioassay experiments for a single species, so data is usually in short supply. The
European Chemical Agency (ECHA) sets the minimal data requirement to a sample
size of 10, preferably 15 (ECHA 2008).

To describe the tolerance of all species to be protected, the distribution of the
CECs is then estimated from the sample of tested species. In practice, a parametric
distributional assumption is often adopted (Forbes and Calow 2002): the CECs are
assumed to follow a log-normal (Wagner and Lokke 1991; Aldenberg et al. 2002),
log-logistic (Aldenberg and Slob 1993; Kooijman 1987), triangular (Van Straalen
2002; Zhao and B. Chen 2016) or BurrIII (Shao 2000) distribution.

Once the response of the community is characterized by the distribution, the
goal of the risk assessment is to define a safe concentration, which will protect all or
most of the species. In the case of distributions without a lower bound above 0, no
concentration would protect all species potentially exposed, so a cut-off value is often
chosen as the safe concentration. This is typically the Hazardous Concentration for
5% of the Species (HC5), which is the 5th percentile of the distribution. Instead of
the estimate of 5th percentile, the lower extreme of a confidence interval around the
5th percentile is often used in practice, and, on top of that, a safety factor is to be
subsequently applied to the resulting value.

The difficulty to justify the choice of any given parametric distribution for the
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SSD has sparked various research directions. Several contributions (F.-L. Xu et al.
2015; He et al. 2014; Jagoe and Newman 1997; Van Straalen 2002; Xing et al. 2014;
Zhao and B. Chen 2016) have sought to find the best parametric distribution using
goodness-of-fit measures for model comparison. The consensus on this issue is that
no single distribution seems to provide a uniformly superior fit and that the answer is
essentially dataset dependent (Forbes and Calow 2002). In fact, model comparison
and goodness of fit tests have relatively low power on small datasets, precluding the
emergence of a clear-cut answer. Therefore, the log-normal distribution has emerged
as the customary choice, notably because it readily provides confidence intervals on
the HC5.

Another research direction has aimed at avoiding any reference to a distribu-
tion using so-called distribution-free approaches. These efforts include using the
empirical distribution function (Suter II et al. 1999; Jones et al. 1999), rank-based
methods (Van Der Hoeven 2001; L. Chen 2004), bootstrap resampling (Jagoe and
Newman 1997; Grist et al. 2002; B. Wang et al. 2008) or nonparametric kernel
density estimation (Y. Wang et al. 2015). All these approaches have in common
that they require large sample sizes to be applicable, which clashes with the low
amount of data usually available for SSD as well as with the general goal of reduc-
ing animal testing. Finally, some contributions have considered the possibility that
the distribution of the CECs might not be a single distribution but rather a mix-
ture of distributions (Zajdlik et al. 2009), datasets being an assemblage of several
log-normally distributed subgroups (Kefford et al. 2012; Craig 2013). This is more
realistic from an ecological point of view: several factors influence the tolerance
of a species to a contaminant such as the taxonomy or habitat, and contaminants
such as pesticides might even have target species groups, which therefore react very
differently from non-target species. Hence, scientific knowledge provides support to
the assumption that an SSD might be composed of several subgroups, although the
CECs within a group might still be well-approximated by a log-normal distribution.

4.1.2 Objectives and outline

Given the determinants of species sensitivity to contaminants are still an open re-
search question, little knowledge is available a priori on the group structure: this
represents a strong motivation for a nonparametric approach. However, any SSD
method needs to be accurate for small datasets, which suggests trying to improve on
the existing frequentist nonparametric methods, which are mostly based on asymp-
totic guarantees. Bayesian nonparametric (BNP) mixture models offer an effective
solution for both large and small datasets because the complexity of the mixture
model adapts to the size of the dataset. It offers a good compromise between simplis-
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tic parametric models and kernel density methods which might exhibit drawbacks
such as lack of flexibility (Barrios et al. 2013), problematic uncertainty quantifica-
tion, or overfitting. Indeed, while it is always possible to obtain confidence intervals
for a frequentist method using bootstrap, it can be difficult to stabilize the interval
for small datasets even with a large number of bootstrap samples. Importantly, the
low amount of information available in small datasets to estimate the groups’ pa-
rameters can be complemented via the prior, as some a priori degree of information
is generally available from other species or contaminants (Awkerman et al. 2008;
Craig 2013; Craig et al. 2012). Finally, note that the current official recommenda-
tion in the case of apparent multimodality of the toxicity dataset is to use only the
most sensitive group (ECHA 2008; Zajdlik et al. 2009). As a result, a multimodal
approach has the potential to greatly improve the current methodology by mak-
ing better use of existing data. Indeed, Fox et al. (2021) recognizes that observing
multimodal data is common and one proposed solution is to use a mixture model.

In Section 4.2 we present a Bayesian nonparametric approach to SSD based on
a nonparametric mixture model. We show that our BNP-SSD approach can include
censored data, which are common in ecotoxicology (Kon Kam King et al. 2014), and
that it provides a rigorous description of the uncertainty on the variable of interest,
the HC5. We showcase the value of our approach by comparing the BNP-SSD
with the most standard normal-SSD approach (Aldenberg and Jaworska 2000) and
with a nonparametric SSD method based on Kernel Density Estimate (KDE) (Y.
Wang et al. 2015). The comparison is performed on simulated data in Section 4.3,
to demonstrate the higher accuracy of the BNP-SSD, and we study real censored
and noncensored datasets in Section 4.4 highlighting the robustness of our method.
Additionally, we perform an exploratory analysis to describe what biological insight
we can gain with BNP-SSD by studying patterns of species or contaminants induced
by the clustering in Section 4.5. Finally, we conclude and describe further research
directions in Section 4.6.

The code used in this paper is available on GitHub at https://github.com/
alamichL/BNP_SSD/.

4.2 Methods

Due to the wide spectrum of variation of SSD concentrations and to their positivity,
it is common practice to work on log transformed concentrations. We consider a
sample of n log-concentrations that we denote by X1:n = (X1, . . . , Xn), that typically
represents the CEC for a collection of n species tested with a given contaminant.
Moreover, the data are standardized: observations are centered and rescaled to be
of variance one. After the inference, all estimations are transformed back to the
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original scales.

We carry out density estimation for the SSD based on a sample X1:n using
Bayesian nonparametric mixtures. The method of mixtures of probability density
kernels with a nonparametric prior as mixing measure is due to Lo (1984), where
Dirichlet process mixtures (DPM) is introduced. Generalizations of the DPM corre-
spond to allowing the mixing distribution to be any discrete nonparametric prior. A
large class of such prior distributions is obtained by normalizing random measures
known as completely random measures (Kingman 1967). The normalization step
gives rise to so-called normalized random measures with independent increments
(NRMI) as defined by Regazzini et al. (2003). See Lijoi and Prünster (2010); Jor-
dan (2010); Barrios et al. (2013) for reviews. More details on specific choices of
the NRMI prior and their inferential impact are provided in the sequel. An NRMI
mixture model is defined as

Xi | G
i.i.d.∼ f̃(x) =

∫
f(x | θ)G(dθ), (4.1)

G ∼ NRMI

where k is a probability density kernel parametrized by some θ ∈ Θ and G is a
random probability on Θ whose distribution is an NRMI. Alternatively, the mixture
model can also be formulated hierarchically as

Xi | θi
ind∼ f(x | θi), i = 1, . . . , n,

θi | G
i.i.d.∼ G, i = 1, . . . , n, (4.2)

G ∼ NRMI.

Specifically, we consider location-scale mixtures and denote by θi = (µi, σi) the
vectors of individual means and standard deviations, θi ∈ R× R+. As discussed in
the Introduction, log-concentrations are commonly fitted with a normal distribution,
or with mixtures of such distributions. Our aim is to move from these parametric
models to the nonparametric specification in (4.2), and in order to allow for com-
parisons with competing approaches, we stick to the normal specification for k on
the log-concentrations X1:n, f(x | µ, σ) = N (x | µ, σ2).

Within this framework, density estimation is carried out by evaluating the pos-
terior mean

f̂(x | X1:n) = E
(
f̃(x) | X1, . . . , Xn

)
(4.3)

for any x in R.

We compare the proposed BNP-SSD to two competitors. First, the most com-
monly used model for the SSD, the normal distribution (Aldenberg and Jaworska
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2000), with estimated density f̂N (x) = N (x | µ̂, σ̂2) where µ̂ and σ̂ are the data em-
pirical mean and standard deviation. Second, the frequentist nonparametric kernel
density method recently applied to the SSD by Y. Wang et al. (2015), with estimated
density f̂KDE(x) = 1

n

∑n
i=1N (x | Xi, h

2
n) where hn = 1.06σ̂n− 1

5 is the asymptotically
optimal default bandwidth recommendation of Silverman (1986), also used by Y.
Wang et al. (2015).

4.2.1 Censored data

Kon Kam King et al. (2014) explained how to use censored data with the normal
SSD, and showcased the drawbacks of the common approach, which consists of trans-
forming or discarding censored data in SSD. It is similarly possible to incorporate
censored data into the BNP-SSD.

Indeed, only the first line of the hierarchical model defined in (4.2) needs to be
suitably adapted, while the other levels in the hierarchy remain unchanged. More
specifically, denote by F the cumulative density function of the kernel k, then:
f(x | θ) has to be replaced by F (x | θ) for a left-censored observation, by 1−F (x | θ)
for a right-censored observation, and by F (xr | θ)−F (xl | θ) for an interval-censored
observation [xl, xr]. This approach can be used for the standard normal SSD and
any likelihood-based inference, but there is no widely available tool to perform KDE
on all types of censored data: the R package ICE does not handle left/right censored
data (not maintained anymore on CRAN); R packages muhaz or Kernelheaping can
deal with right or interval-censored data respectively, but there does not seem to be
an available implementation for all three types of censored data.

In this paper, we illustrate the differences among the various approaches on a
censored dataset and, for comparison purposes, we study censored and non-censored
versions of the dataset. To obtain a non-censored dataset from a censored dataset, we
follow the customary approach, which consists of discarding left and right censored
data and replacing interval-censored data with the central value of the interval.

4.2.2 Prior specification

The class of NRMI priors is very broad and we refer the reader to Lijoi and Prünster
(2010) for an extensive review. Here we focus on a specific member of the class known
as the normalized stable process (Kingman 1975), which as argued in Barrios et al.
(2013) represents a natural default choice. It is specified in terms of a stability
parameter γ ∈ (0, 1) and a base measure H, which corresponds to the expectation of
the random probability measure. The stability parameter γ controls the variability of
the prior distribution on the number of clusters: heuristically, a small γ corresponds
to an informative prior, while a large γ indicates a vague prior. Large values of γ can
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require expensive computations to preserve the quality of the posterior sampling.
We chose γ = 0.4 as a compromise between the flexibility of the model and the
computational requirements. See Lijoi et al. (2007); Barrios et al. (2013) for details.

As mentioned previously, we shall consider location-scale mixtures, meaning that
the NRMI prior should be defined on R×R+, the space of locations and scales. Thus
the base measureH is defined on R×R+, and we denote by f0 its density with respect
to the Lebesgue measure on R×R+. We assume that the locations µ and scales σ are
a priori independent. Thus, we use the notation f0(µ, σ) = f 1

0 (µ)f 2
0 (σ) with possible

hyperparameters for f 1
0 and f 2

0 . The possibility to specify independent priors for µ
and σ is a beneficial feature of NRMIs which do not require any conjugacy structure
in the prior. Therefore, the prior specification can be derived in a straightforward
way.

The specific choice of distribution on the location parameters of the clusters µ
is a normal distribution f 1

0 (µ) = N (µ | φ1, φ
−1
2 ) where mean φ1 and precision φ2

are assigned a normal-Gamma conjugate hyperprior. This corresponds to a vague
prior for the location of the clusters, which can just as well be at the center of the
dataset or at the borders. Regarding the scale parameter σ of the clusters, given
the standardization of the data during the pre-processing where the variance is set
to one, σ should be smaller than one, approaching one only in cases of unimodality.
Moreover, σ should also be a priori bounded from below since numerous extremely
small clusters do not make biological sense regarding species sensitivity distributions.
Therefore, we choose a uniform prior f 2

0 (σ) = Unif[0.1,1.5](σ), leaving room around
the upper bound of one to allow for potential unimodality. We studied the sensitivity
with respect to this prior specification by varying its extreme points and also with
respect to a left-truncated normal prior of mean 0.5, variance 1 and lower bound
0.1. Note that the latter has approximately 3/4 of its mass within the support of the
Unif[0.1,1.5] distribution. The sensitivity analyses showed little variation to moderate
changes in the parameters of these two prior distributions.

4.2.3 Posterior sampling

Several software packages devoted to the implementation of Bayesian nonparametric
models have appeared in recent years: DPpackage (Jara et al. 2011) is an R package
containing a rather comprehensive bundle of functions for Bayesian nonparametric
models, but is not anymore maintained on CRAN; Bayesian Regression (Kara-
batsos 2016) is a software for Bayesian nonparametric regression; BNPmix (Corradin
et al. 2021) is an R package for Bayesian nonparametric multivariate density es-
timation, clustering, and regression, using Pitman-Yor mixture models; BayesMix
(Beraha et al. 2022) is a C++ library for MCMC posterior simulation for general
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Bayesian mixture models. Here, we use BNPdensity1, an R package which per-
forms BNP density estimation and clustering under a general specification of NRMI
prior based on generalized Gamma processes see Barrios et al. (2013); Arbel et al.
(2021). BNPdensity leverages the popular Ferguson and Klass algorithm (Ferguson
and Klass 1972), extended with a Metropolis–Hastings within Gibbs scheme.

4.2.4 Estimation of the HC5

The main quantity of interest for ecological risk assessment is the HC5, which cor-
responds to the 5th percentile of the SSD distribution. In our BNP framework, we
rely on the posterior expectation, which corresponds to the Bayes estimator under a
quadratic loss function, as our density estimator. Moreover, the 95% credible bands
are formed by the 2.5% and 97.5% quantiles of the HC5 posterior distribution.

The 5th percentile of the KDE can be obtained by numerical inversion of the
cumulative distribution function, and the confidence intervals using nonparametric
bootstrap. The 5th percentile of the normal SSD and its confidence intervals were
obtained following the classical method by Aldenberg and Jaworska (2000).

4.2.5 Robustness comparison using Leave-One-Out cross val-
idation

We compare the predictive performance of the three SSD models using Leave-One-
Out (LOO) cross-validation. We compute the LOO for each method as:

LOOi = f̂(Xi | X−i), (4.4)

where f̂( · | X−i) is the density estimate based on X1:n with Xi left out for each
of the three methods. For the BNP models, LOOs are referred to as conditional
predictive ordinates (CPOs) statistics. They are commonly used in applications,
see for instance Gelfand (1996).

A CPO statistic is defined for each data point Xi as

CPOi = f̂(Xi | X−i) =
∫
f(Xi | θ)p(dθ | X−i),

where p(dθ | X−i) is the posterior distribution associated to X−i and f̂( · | X−i) is
the (cross-validated) posterior predictive distribution of (4.3). CPOs can be easily

1Available at https://CRAN.R-project.org/package=BNPdensity.
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approximated by Monte Carlo as

ĈPOi =
 1
T

T∑
t=1

1
f(Xi | θ(t))

−1

,

where {θ(t), t = 1, 2, . . . , T} is an MCMC sample obtained as detailed in Sec-
tion 4.2.3. For the two frequentist models, the LOOs can be computed by fitting
them directly on the leave-one-out data X−i for each i.

4.2.6 Clustering estimation

The question of how to estimate data clustering based on an MCMC posterior
sample is a long-standing problem in Bayesian statistics (see Dahl 2006; Lau and
Green 2007). Estimating a clustering structure is computationally expensive, owing
to the extremely rapid growth in the cardinality of the partition space with the
sample size n, known as the Bell number of order n. Enumeration of all partitions
is infeasible in practice, thus one typically resorts to approximations. Many ad-hoc
procedures have been devised in the literature. However, as noted by Dahl (2006),
it seems counter-intuitive to apply an ad-hoc clustering method on top of a model
that itself produces clusterings.

We adopt instead a fully Bayesian route by undertaking clustering on decision-
theoretic grounds. We consider a loss function L and propose a Bayesian point
estimator ẑ1:n for a clustering structure obtained as an argument that minimizes the
posterior expected loss given the data X1:n

ẑ1:n ∈ arg min
z′

1:n

∑
z1:n

L(z′
1:n, z1:n)p(z1:n | X1:n), (4.5)

where p(z1:n | X1:n) is the posterior distribution of clustering z1:n.
The maximum a posteriori (MAP), often considered in the literature, is an ex-

ample of such a Bayesian estimator, based on the very crude 0−1 loss function L0−1.
However when n is large, a posterior sample generally hardly visits twice the same
clustering, thus making the empirical MAP of the MCMC output very sensitive to
the initialization of the chain and of very limited validity in practice.

Manifestly, many other loss functions can be considered and expected to per-
form better than L0−1. One particular choice of a loss function stands out from
these in best estimating the number of groups in a clustering. It is known as the
variation of information, denoted by VI, which is a loss function firmly established
in information theory (Meilă 2007; Wade and Ghahramani 2018). The variation of
information between two clusterings is defined as the sum of their information (their
Shannon entropies) minus twice the information they share. Simulations indicate
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that the variation of information is a sensible choice: when other losses such as the
Binder loss (Binder 1978) typically tend to overestimate the number of clusters, the
variation of information instead seems to effectively recover it (see for instance the
simulated examples, and more specifically Figures 6–8, of Wade and Ghahramani
2018).

A merit of the approach presented in Wade and Ghahramani (2018) is that
it rests on a greedy search algorithm to determine the minimum loss clustering
of (4.5). Starting from the MCMC output, this greedy approach explores the space
of partitions not restricted to those visited by the MCMC chain to find the optimum.
The algorithm is available as an R package called mcclust.ext that we used in this
study. See also dahl2022search for another recent algorithm.

4.3 Simulation study

In order to compare the performance of BNP-SSD, the normal-SSD (Aldenberg and
Jaworska 2000) and the nonparametric KDE-SSD (Y. Wang et al. 2015), we perform
a simulation study with synthetic datasets corresponding to different scenarios.

4.3.1 Simulated data

We consider three distinct simulated data scenarios corresponding to various situa-
tions:

(a) a standard normal distribution: this is a situation where the normal assump-
tion made for SSD is justified;

(b) a t-distribution with three degrees of freedom and noncentrality parameter
equal to−2: this is a situation where some species are relatively more sensitive,
creating a heavier tail on the left of the distribution;

(c) a bimodal distribution corresponding to a mixture of normals 1/3N (−2, 1) +
2/3N (5, 1): this is a situation where a group of species is much more sensitive
than all the others, typical of some pesticides which disproportionately affect
the target species.

These three scenarios represent the diversity of empirical distributions found in real
data such as the National Institute for Public Health and the Environment (RIVM)
database (Zwart 2001).

For all settings, we sampled independently S = 40 datasets of sizes 10, 20, 50,
100. These sizes are representative of the dataset sizes in the field, as described in
the Introduction. Figure 4.1 depicts the data generating densities and the different
estimates obtained from the three different approaches with datasets of size 20.
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Figure 4.1: Three simulation scenarios: data generating density (solid line) and
density estimates for each model based on datasets of size n = 20 (dashed lines).
Orange ( ) for the BNP model, blue ( ) for the normal model, and green ( ) for
the KDE model.

4.3.2 Performance comparison of the three approaches

For each sampled dataset i ∈ {1, . . . , S} and each model considered, we estimate
the data generating density f by a density denoted f̂i, and compute the associated
5th percentile q̂i, which is used as an estimate of the true HC5 denoted by q0. We
denote by (l̂i, ûi) a 95% confidence/credible interval for q̂i, and by ℓ̂i = ûi − l̂i its
length. To account for sampling variation, we compute averaged summaries (using
the notation

〈
·
〉
S

to denote averaging over the S independent samples).

We compute two performance indicators, the mean absolute error MAE =
〈
|q̂i−

q0|
〉
S
, and the mean integrated squared error MISE =

〈 ∫
(f̂i− f)2

〉
S
. Moreover, we

compute the mean confidence/credible interval length MCIL =
〈
ℓ̂i
〉
S

as a measure
of uncertainty: as the BNP model captures model uncertainty, we expect it to give
a more conservative estimate of uncertainty than the other models. However, we
would not want to be conservative to the point that the estimates are useless for the
practical purpose of estimating an HC5.

The density estimates give a first intuition of the superiority of the BNP-SSD
over the other two models in recovering the true density (Figure 4.1). The results
from the simulation study are presented in Figure 4.2, which we describe from top
to bottom and left to right.

On the normal simulated data, the well-specified normal model obviously per-
forms best. However, the mean absolute error on the HC5 of the BNP is very similar
to that of the normal. For small sample sizes, the MISE of the BNP is almost the
same as that of the normal. This illustrates the fact that the BNP model complexity
scales with the amount of data and that in data-poor contexts, it essentially reduces
to a normal model. For small dataset sizes, the mean CI length is larger for the
BNP model than for the normal, reflecting the model uncertainty built into the BNP
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Figure 4.2: Normal, t-student, and normal mixture simulation scenarios (from left
to right); mean absolute error (MAE), mean integrated squared error (MISE), and
mean confidence/credible interval length (MCIL) as a function of the dataset size
(from top to bottom). Orange ( ) for the BNP model, blue ( ) for the normal
model, and green ( ) for the KDE model.

model, which is a sign of its potential to flexibly adapt in case of deviations as more
data become available. For larger sizes, the model uncertainty decreases and the
BNP and normal model coincide.

For the t-student simulated data, the BNP model outperforms the other two.
The normal and BNP have a smaller mean absolute error than the KDE, the BNP
and KDE have a smaller MISE and the mean CI length for the normal model is
misleadingly small.

Finally, for the multimodal simulated data, the BNP model is clearly superior
to the other two models in terms of mean absolute error and MISE. The mean CI
length is relatively larger than the other two models for small dataset sizes and
smaller for larger dataset sizes.
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4.4 Analysis of contaminant-wise clustering

4.4.1 Real data description

We illustrate the advantages of the proposed Bayesian nonparametric approach by
means of a selection of contaminants extracted from a large database collected by
the RIVM and first presented in Zwart (2001).

We study the dataset already curated by Hickey et al. (2012) with the same
restrictions concerning data quality and homogeneity. We consider both the cen-
sored and the non-censored versions of the dataset, the non-censored version being
obtained by following the traditional approach of discarding left and right-censored
data and taking the central value of interval-censored data. The dataset is an
aquatic ecotoxicity research database, with 1,557 species and 3,448 distinct chem-
icals. Specifically, the dataset records the following covariates: species, chemical,
and concentration.

To deal with the presence of multiple CECs values for one species, we used the
classical approach to replace these values by the geometric mean of the values as a
surrogate (ECHA 2008) for non-censored data, and followed Kon Kam King et al.
(2014) in the case of censored data.

4.4.2 Density, quantiles and HC5 estimation

For illustration purposes, we present three categories of contaminants: contami-
nants with large datasets, consisting of more than 60 values, medium datasets, with
around 25 values, and small datasets, with a little over 10 values. For each of these
categories, we select a roughly unimodal, a skewed and a bimodal dataset, as in
the simulation study. This selection was performed for non-censored datasets. The
three models (BNP, KDE and normal) were fitted on each dataset and we studied
the estimate of the HC5 and its credible interval, the LOO error and the shape of
the estimated density compared to the histogram. The censored version of the same
datasets was also studied with the BNP and normal model, while there does not seem
to exist any implementation of the KDE model for censored data (see Section 4.2.1).
The results are displayed in Appendix 4.A, see Figure 4.7 to Figure 4.12.

The BNP model is both more flexible than the KDE model, as apparent from
the density estimates for the bimodal datasets, and comparably, or even more, ro-
bust. The length of the confidence/credible intervals does not exhibit substantial
differences among the three methods. This represents strong evidence in favor of
the claim that being less restrictive (in terms of distributional assumptions) than
the normal model does not result in over-conservative estimates of the HC5. This is
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of great importance since over-conservative estimates would seriously compromise a
wide adoption of the BNP SSD approach. More precisely, in the case of the roughly
normal datasets, the BNP method results in an estimate for the HC5 comparable
to that of the normal model. When the datasets strongly deviate from the normal
model, the HC5 estimates from the normal and BNP model differ substantially and
strongly support the use of the more flexible BNP model over the normal.

4.4.3 Contaminant-wise clustering

We have so far demonstrated the advantages of the BNP method over the existing
approaches to SSD for density estimation and for the determination of the HC5.
There is an additional benefit connected to the BNP-SSD: the mixture model in-
duces a clustering of the species, which conveys interesting information from the
biological point of view. Indeed, one of the long-standing questions around SSD,
and ecotoxicology in general, is to understand what drives the sensitivity of species
to a contaminant. Craig (2013) assumes that taxonomy is a driving factor and effec-
tively imposes a clustering based on taxonomic units. Zwart (2001) investigates the
influence of habitat by comparing freshwater and saltwater species, while Kefford
et al. (2012) study the variations in sensitivity in different regions of the world.

All these approaches start from a possible clustering structure and test for a
significant difference among cluster units. The BNP-SSD takes the opposite path
by endogenizing the clustering in a probabilistically principled way. Indeed, it allows
the clustering structure to emerge from the data, and, by using meta-data about
the species, this structure can be examined a posteriori to verify whether it matches
certain scientific hypotheses about the driving forces behind species sensitivity.

The clustering induced by the BNP model may or may not coincide with partic-
ular information about the species, which can challenge or support existing theories
about the determinants of species sensitivity. Figure 4.3 compares the estimated
clustering structure for Carbaryl and a quasi-taxonomic grouping expected to be
relevant for species sensitivity in Zwart (2001). Two clusters emerge, one predomi-
nantly composed of crustaceans and containing all crustaceans but one, and another
predominantly composed of fishes, containing all fishes but one, and all the molluscs.
The three insects are scattered over the two clusters, the only annelid is grouped
with the crustaceans while the only amphibian is grouped with the fishes. Thus,
for Carbaryl, the estimated clustering structure seems strongly associated with the
quasi-taxonomic grouping and supports the theory that species sensitivity is depen-
dent on taxonomy, with fish forming a cluster relatively resilient to Carbaryl while
crustaceans form a more sensitive cluster. However, this parallel between taxon-
omy and sensitivity is not observed for every contaminant; indeed, it is possible to
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Figure 4.3: SSD for Carbaryl (CAS: 63-25-2) with the quasi-taxonomic group of
each species overlaid on the curve. Left: Species coloured by quasi-taxonomic group.
Right: Species coloured by cluster membership in the BNP model.

identify contaminants for which the estimated clustering does not match the quasi-
taxonomic grouping. A general tendency observed over many contaminants is that
fishes tend to group in a single cluster. This insight could be used to argue for re-
ducing the number of fish species to be tested, as their contribution to the complete
SSD could be emulated by giving a higher weight to a few representative species.

4.4.4 BNP-SSD Shiny application

The method described above can be used directly with the BNPdensity package,
but this requires a certain level of fluency in the R language. Thus, we developed
a Shiny application, named BNP-SSD, tailored to SSD problems and based on the
functions of the package BNPdensity, available at https://alamichl.shinyapps.
io/BNP_SSD/. This application is inspired by the application shinyssdtools of
Dalgarno (2021).

In this application, the BNP model described in Section 4.2 is fitted to censored
or uncensored data. Before fitting the model the concentration data are cleaned,
dealing with the possible presence of multiple CECs values for one species, trans-
formed using a log-scale, and centered-scaled. For greater flexibility, some options
are left to the user, such as the number of iterations of the MCMC algorithm.
Once the model has been fitted, the estimated density is plotted, along with some
goodness-of-fit graphs. In another panel, an estimate of HC5 is made using the pos-
terior distribution over quantiles. It is also possible to estimate a percentile of the
distribution other than the 5th percentile. The credible bands of this estimate are
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also computed. Finally, in the last panel, the induced optimal clustering is computed
and plotted.

4.5 Cross-contaminant clustering

It would be highly interesting to establish whether similar patterns occur commonly
for contaminants by studying the clustering structure for all contaminants in the
dataset. A complete clustering analysis would require a hierarchical model with a
contaminant effect, which is beyond the scope of the present paper and will be the
object of future work. Here we approach the issue in a simple, yet insightful way
by fitting the model independently for all contaminants. Consequently, we present
a post-processing of the clustering structure estimated for each contaminant. The
general idea is, over all contaminants, to assess how often each pair of species is
grouped. This defines sensitivity communities of species, which we compare to the
quasi-taxonomic grouping.

We restrict ourselves to contaminants tested by at least eight species, which is
a little below the minimum threshold recommended for fitting a Species Sensitivity
Distribution (ECHA 2008). We first fit the model on all such contaminants. We
then combine the information from the clustering for each contaminant, to under-
stand if some common patterns may be observed. To extract information from the
clustering structure for each contaminant, we transform each estimated clustering
into an association matrix. Stacking all the association matrices on top of each
other forms a three-dimensional array, also called a tensor, each slice corresponding
to a contaminant. One difficulty is that contaminants are tested on different sets of
species, with potentially little overlap. This results in a large proportion of missing
values (pairs of contaminants-species that have not been tested) that need to be
dealt with.

4.5.1 Non-negative tensor factorization

We perform non-negative three-way tensor factorization (Cichocki et al. 2009),
which is a tensor generalization of principal component analysis. It is a dimension-
reduction technique that decomposes the association tensor into a sum of R rank-one
tensors. Developed in Chemometrics, this technique has also been employed in Bio-
statistics, Signal Processing, Linguistics, and Machine Learning (Gauvin et al. 2014).
The technique also allows the imputation of missing values.

We use a Parallel Factors Analysis (PARAFAC), also referred to as Canonical
Decomposition (CANDECOMP) factorization; Section 4.B in Supplement provides
details on this technique and background on tensors properties. Denoting by Y the
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tensor of the data described previously, we have that Y ∈ RnS×nS×nC is a symmetric
tensor in the first two dimensions, where nS and nC , respectively, denote the number
of species and contaminants. The general PARAFAC factorization for some tensor
Ŷ ∈ RI×J×K is denoted by

Ŷ = [[A,B,C]] =
R∑
r=1

ar ◦ br ◦ cr,

where A = [a1, . . . , aR] ∈ RI×R, B = [b1, . . . , bR] ∈ RJ×R and C = [c1, . . . , cR] ∈
RK×R are three components or factors matrices, and ◦ stands for the vector outer
product. For the considered data, the symmetry of the tensor Y in the first two
dimensions implies that the PARAFAC factorization can be simplified as Y =
[[A,A,C]], where A = [a1, . . . , aR] ∈ RnS×R and C = [c1, . . . , cR] ∈ RnC×R. Note
that the factorization is only an approximation and incurs in some additive error
E in the form of Y = [[A,A,C]] + E. To give physical meaning to the different
components found, we use the non-negative PARAFAC factorization (Y. Xu and
Yin 2013) from the multiway R package (Leeuw 2011). This adds non-negativity
constraints on the component matrices air ∈ R+ and cjr ∈ R+ for all i ∈ {1, . . . , nS},
j ∈ {1, . . . , nC} and r ∈ {1, . . . , R}.

A popular heuristic to determine the number of components R is the core-
consistency diagnostic (Bro and Kiers 2003). This diagnostic requires the impu-
tation of the missing values for efficient computation. As the number of missing
values in our type of data is large, we used instead a cross-validation method. The
cross-validation consists of removing a chosen proportion of the tensor non-missing
values, performing the decomposition for different ranks, and then evaluating the
reconstruction error on the removed value, a type of K-fold cross-validation. We
measure the reconstruction error using the Frobenius distance between this tensor
and the original one on the non-missing values (see Figure 4.13).

The decomposition can be performed once the rank of the decomposition is cho-
sen. The result of the three-way decomposition consists of three factor matrices,
two of which with dimension nS × R, and one with dimension nC × R. The first
two encode the degree of membership of each species to each component of the
decomposition and are equal by construction. The third matrix encodes, for each
contaminant, its degree of membership to each component. To facilitate the inter-
pretation of the results, we threshold the membership degrees and decide whether
each species and contaminant belongs to a component or not. To do this, we use
K-means clustering on the degree of membership vectors to adaptively threshold
the membership degrees. Species and contaminants may be allocated to 0 or several
components (see Figure 4.14 and Figure 4.15).
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Figure 4.4: Left: Quasi-taxonomic composition of the species in the part of the data
considered. The groups are defined according to the classification in Zwart (2001).
Right: (Top) Number of contaminants tested for each species in the data considered
(at least 13 contaminants by species). (Bottom) Number of species tested for each
contaminant.

4.5.2 Results

We used this methodology on a part of the dataset described in Section 4.4.1 (see Fig-
ure 4.4 for a description of the restricted dataset). To lower the proportion of missing
data, we only considered the species for which at least 13 contaminants have been
tested; with this restriction, 95% of the data are missing. Using the cross-validation
approach, the rank 41 was selected (see Figure 4.13). We obtained 41 components
of the contaminants and the species. We present seven components among these,
selecting those with the highest contrast using Figure 4.14 and Figure 4.15, deciding
to only select the well-separated components in the sense of K-means clustering.
These seven components are analyzed in Figure 4.5 and Figure 4.6.

Figure 4.5 presents the quasi-taxonomic composition of the seven components in
count (left) and in relative proportion (right). Figure 4.19 and Figure 4.18 present
the same result for other taxonomic ranks. We can not observe a clear difference in
composition among the different components. This suggests that quasi-taxonomy
does not appear to be the main driver for species to be co-clustered, or in other
words, quasi-taxonomy does not appear to strongly determine species sensitivity.
This observation should be modulated by the fact that, as we see in Figure 4.4, fish
species are over-represented in the dataset, so they form a substantial part of every
cluster.

Figure 4.6 presents the weights of each contaminant in the various components.
We can observe that only one contaminant (Benzenamine) has a significant weight
in component E. In components B and F, the most weighted contaminants are
mostly insecticides. More precisely, component B is composed of six insecticides
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Figure 4.5: Quasi taxonomic composition of the components. The groups are defined
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and one larvicide (Temephos). Component F contains five insecticides including
four organophosphate insecticides, and Cadmium nitrate, which is mostly used in
glass coloration. Component G is composed of two fungicides mainly used as wood
preservatives. Component A mostly contains solvents. Two of the highest-weight
contaminants in component C are composed of sulfuric acid, all the contaminants
in component C have a wide variety of usages. Finally, component D contains some
insecticides but also some contaminants notably used in photography fixators, anti-
septics or hygiene products. Together, these observations suggest that components
are associated to contaminants of similar type, or, in other words, that species which
respond similarly to one type of contaminant could tend to respond similarly to an-
other component of the same type. This could be seen as providing support to the
idea that species sensitivity across contaminants may be correlated, which has been
used for instance in Awkerman et al. (2008).
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4.6 Discussion and future research

We presented a novel approach to SSD based on a Bayesian nonparametric mixture
model. We performed an extensive comparison to the current SSD models both on
simulated and on real datasets, to demonstrate the added value of the proposed
approach. The BNP-SSD performs particularly well when the dataset deviates from
a log-normal distribution, which allows to leverage its great flexibility in describing
the data. At the same time, the proposed approach turns out to be relatively robust
and does not seem prone to over-fitting. The BNP-SSD can be thought of as an
intermediate model between the single component log-normal-SSD, and the KDE
with as many components as there are species. Indeed, in all practical cases of the
RIVM dataset, the number of clusters necessary to describe the data was no greater
than 3.

The BNP-SSD provides several benefits for risk assessment: it is an effective
and robust standard model that adapts to many datasets. As such, the BNP-SSD
represents a safe tool to remove one of the arbitrary parametric assumptions of
SSD (Forbes and Calow 2002). Moreover, as a Bayesian method, it readily provides
credible intervals.

The traditional approach to SSD is to consider contaminants independently. In
a context of data scarcity, only exacerbated by the drive to reduce animal testing,
it would be desirable to leverage the long history of ecotoxicity testing to borrow
information from experiments regarding different contaminants. Large databases
are already available. We can hope that the ongoing discussion about transparency

119



4.6. DISCUSSION AND FUTURE RESEARCH

on the regulation of chemicals will even push towards greater public availability
of data. Therefore, it is a timely effort to develop models that harness all the
information already available about species’ sensitivity to other contaminants. This
is, in essence, the proposal brought forward by Awkerman et al. (2008) and Craig
(2013) which use taxonomic information to predict the sensitivity of unknown species
to a contaminant. An important by-product of the BNP-SSD approach is that it
provides interesting opportunities for subsequent cluster analysis. We presented such
an example of a post-processing analysis using non-negative tensor factorization,
summarizing insights over 179 contaminants, which suggested some regularities in
species sensitivity based on contaminant type. However, we did not observe a strong
relation between taxonomy and species sensitivity across contaminants. As such, we
may hypothesize that there could be structures other than taxonomic which would
be relevant to species sensitivity, such as ecological niche.

This idea motivates a natural extension of the present work: the BNP-SSD could
be augmented to model inter-contaminant variation in a hierarchical model. This
is particularly relevant as some contaminants can have very similar toxicity because
they belong to the same class of chemicals. A variety of Bayesian nonparamet-
ric hierarchical models already exist (Teh et al. 2006; Camerlenghi et al. 2019), and
have demonstrated their usefulness and applicability in various contexts, so the tools
necessary for this extension would only need some tailoring. Moreover, as discussed
when studying the species clustering, the groups could be specified either based on
the known chemical nature of the contaminants or learned in a flexible manner us-
ing a Bayesian nonparametric approach. This would open the door to a principled
investigation of similarities among potentially very different contaminants. Addi-
tionally, one would also like to move forward from summarizing the sensitivity of
species by a single value. Ecotoxicological tests are usually analyzed by fitting a
dose-response model which describes several aspects of the species’ response to a
contaminant, such as the time between exposure and effect. Using all parameters
from the dose-response model would imply performing the clustering in a higher di-
mensional space, increasing the discriminating power between groups and ultimately
resulting in more meaningful clusters.
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This supplementary material is organized as follows: Section 4.A provides addi-
tional results on real data, Section 4.B contains details on the non-negative tensor
factorization, and Section 4.C displays additional figures related to Section 4.5 of
the main document.

4.A Results on real data

This section illustrates the results stated in Section 4.4.2. We present the comparison
of the three models (BNP, KDE and normal) on real data. We consider three
categories of contaminants: contaminants with large datasets, consisting of more
than 60 values, medium datasets, with around 25 values, and small datasets, with a
little over 10 values. The three models were fitted on each dataset and we studied
the estimate of the HC5 and its credible interval, the LOO error and the shape of
the estimated density compared to the histogram. The censored version of the same
datasets was also studied with the BNP and normal model.

4.A.1 Model comparison on non-censored data

We present the results for the non-censored version of the datasets.
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4.A.1.1 Large non-censored datasets

0.0

0.2

0.4

0.0 2.5 5.0

0.0

0.2

0.4

0.6

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

0.0 2.5 5.0 7.5

Density estimates

●

●

●

●

●

●

0.5 0.7 0.9 1.1 1.3

●

●

●

●

●

●

1.5 2.0 2.5 3.0

●

●

●

●

●

●

0.4 0.8 1.2

HC5

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.01

0.10

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●
0.001

0.010

0.100

●

●
●

●

●

0.1

CPO

Figure 4.7: Density estimates, HC5 and CPO for three large non-censored datasets.
Red ( ) for the BNP model, blue ( ) for the normal model, and green ( ) for the
KDE model.From top to bottom: Cadmium chloride, Potassium Dichromate, and
Carbaryl.
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4.A.1.2 Medium non-censored datasets
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Figure 4.8: Density estimates, HC5 and CPO for three medium non-censored
datasets. Red ( ) for the BNP model, blue ( ) for the normal model, and green
( ) for the KDE model.From top to bottom: 2,4-D Acid, Trichlorfon, Parathion.
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4.A.1.3 Small non-censored datasets
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Figure 4.9: Density estimates, HC5 and CPO for three small non-censored datasets.
Red ( ) for the BNP model, blue ( ) for the normal model, and green ( ) for the
KDE model.From top to bottom: Phosmet, Naled, Sodium dichromate.
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4.A.2 Model comparison on censored datasets

Here we present the results for the censored version of the datasets. As extensions
for kernel density estimators with censored data are not available (see Section 4.2.1),
we only compare the normal and BNP models.

4.A.2.1 Large censored datasets
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Figure 4.10: Density estimates, HC5 and CPO for three large censored datasets.
Red ( ) for the BNP model, blue ( ) for the normal model(KDE not implemented
for censored data). From top to bottom: Cadmium chloride, Potassium Dichromate,
and Carbaryl.
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4.A.2.2 Medium censored datasets
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Figure 4.11: Density estimates, HC5 and CPO for three medium censored datasets.
Red ( ) for the BNP model, blue ( ) for the normal model(KDE not implemented
for censored data). From top to bottom: 2,4-D Acid, Trichlorfon, Parathion.
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4.A.2.3 Small censored datasets
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Figure 4.12: Density estimates, HC5 and CPO for three small censored datasets.
Red ( ) for the BNP model, blue ( ) for the normal model(KDE not implemented
for censored data). From top to bottom: Phosmet, Naled, Sodium dichromate.

127



4.B. DETAILS ON THE NON-NEGATIVE TENSOR FACTORIZATION

4.B Details on the non-negative tensor factoriza-
tion

In this paper, a tensor is a high-dimensional form of matrices. We consider only
three-order tensors, it means any tensor with three dimensions: Y ∈ RI×J×K where
I, J,K ∈ N. We introduce one useful product for tensor factorization or decompo-
sition, the outer product. The outer product of two vectors a ∈ RI and b ∈ RJ ,
denoted by ◦, yields a matrix A ∈ RI×J ,

A = a ◦ b = abT .

The outer product of three vectors a ∈ RI , b ∈ RJ and c ∈ RK yields a third-order
tensor Y ∈ RI×J×K ,

Y = a ◦ b ◦ c, with yijk = aibjck.

A three-order tensor defined as the outer product of three vectors is called a rank-
one tensor. The rank of a tensor Y if defined as the minimal number R of rank-one
tensors Y1, . . . ,YR such that Y = ∑R

r=1 Yr.
The tensor factorization generalizes the matrix factorization techniques. The differ-
ent matrix factorizations are useful notably for feature selection or dimensionality
reduction. The tensor or multi-way array factorization allows to consider applica-
tions where the data contains high-order structures. One of the most popular models
for the factorization of high-order tensors is the PARAFAC model. In the following,
we will describe the decomposition for a third-order tensor, but the model can be
extended to decompose a higher-order tensor.

4.B.1 PARAFAC factorization

We recall the Parallel Factors Analysis (PARAFAC) described in Section 4.5. Given
a tensor Y ∈ RI×J×K , the PARAFAC factorization is denoted by Y = [[A,B,C]]
where A = [a1, . . . , aR] ∈ RI×R, B = [b1, . . . , bR] ∈ RJ×R and C = [c1, . . . , cR] ∈
RK×R are three components matrices. More formally,

Y =
R∑
r=1

aj ◦ bj ◦ cj + E = [[A,B,C]] + E,

where the tensor E ∈ RI×J×K represents the approximation error.
A difficult problem for the PARAFAC model is to choose the appropriate number
of components R. This problem is equivalent to determining the rank of a tensor,
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in the sense that the rank of a tensor is the smallest number of R components in
an exact PARAFAC decomposition, i.e. with a null approximation error tensor E.
Determining the rank of a given tensor is known to be a NP-hard problem.
In the ideal case, there is no noise in the data, so we can fit the PARAFAC model
for different values of R until we have an exact decomposition. This assumes a
perfect procedure for fitting the PARAFAC model, which is not the case in practice.
Furthermore, in a more realistic case, the data is noisy and the procedure described
is no longer applicable.
There are different proposed methods to solve this problem, such as core consistency
diagnostic, residual analysis, visual appearance of loadings (also called factors rep-
resented by the components matrices), or cross-validation. The method we used in
this paper is the cross-validation as described in Section 4.5.

4.B.2 Non-negative tensor factorization

On the PARAFAC model presented previously, it is possible to impose some non-
negativity constraints. The non-negativity constraints allow to give physical mean-
ing to the different components found.
In practice, adding constraints on the PARAFAC model yields to solve an optimiza-
tion problem under constraints. Indeed, finding the PARAFAC factorization means
solving the following optimization problem,

min
A,B,C

∥Y − [[A,B,C]]∥2
F ,

where ∥ · ∥F denotes the tensor Frobenius norm defined by ∥Y∥2
F =∑I

i=1
∑J
j=1

∑K
k=1 y

2
ijk. The non-negative PARAFAC factorization is a PARAFAC

factorization with the following non-negative constraints

min
A,B,C s.t. air, bjr, ckr∈R+

∥Y − [[A,B,C]]∥2
F .

4.C Additional figures for Section 4.5

We now present some additional figures illustrating the results presented in Sec-
tion 4.5.
Figure 4.13 illustrates the choice of the rank decomposition using the cross-validation
method.
Figure 4.14 and Figure 4.15 illustrate the K-means clustering used on each compo-
nents resulting from the tensor decomposition.
Figure 4.16 presents the heatmap of the components and the species, and Figure 4.17
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Figure 4.13: Cross-validation results for the tensor decomposition. Left: Frobe-
nius distance mean of the 30-fold cross-validation with a confidence interval at 95%
around each point with the rank varying between 1 and 47. Right: Frobenius dis-
tance for each of the 30 folds. The rank of the decomposition is chosen by taking the
lowest rank (here 41) contained in the confidence interval from the rank minimizing
the error (here 43).

presents the heatmap of the components and the contaminants. The heatmaps
indicate which contaminants or species have more weights in a component. This is
another way to illustrate the composition of the components.
Figure 4.19 and 4.18 present the taxonomic composition of the seven components
previously selected at two different taxonomic ranks. These two figures support the
idea that the taxonomy does not seem to strongly determine species sensitivity.
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Figure 4.14: Distribution of the contaminant weight in each component. The pres-
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performed using the K-means method. In Section 4.5 only the components where
there is no overlap between the red part and the blue part, components A, B, C, D,
E, F, and G are considered while components H and I are not.
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Figure 4.15: Distribution of the species weight in each component. The presence of
two well-separated groups in the distribution suggests separating the contaminants
that belong to the component and those that do not. The clustering is performed
using the K-means method.
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Figure 4.16: Heatmap of all the species and components.
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Figure 4.17: Heatmap of all the contaminants and components.
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Figure 4.18: Taxonomic composition of the selected components at the Phylum
level.
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Conclusion & Perspectives

Conclusion

This thesis provides some contributions to Bayesian mixture modeling, with a partic-
ular focus on Bayesian nonparametric mixture models. Mixture models are efficient
tools for representing complex data. One of the most important tasks when using
mixture models is to choose the number of components in the model. As presented
in Section 1.2, using a Bayesian nonparametric mixture model is a natural way to
deal with this problem by taking an infinite number of components a priori. In the
first part of the thesis, some theoretical guarantees for this choice were provided.

More precisely, the first part contains theoretical contributions to studying the
consistency of the number of clusters in Bayesian mixture models. In Chapter 2, we
studied consistency for a wide class of Bayesian nonparametric priors, the Gibbs-
type prior. Following the Miller and Harrison (2014) method, inconsistency for the
number of clusters was proven for this class of priors. The same property was studied
for overfitted finite mixture model priors such as the Dirichlet multinomial process,
the Pitman–Yor multinomial process, and the normalized generalized Gamma multi-
nomial process. We proved inconsistency for the number of clusters for overfitted
mixture models based on these priors. We also discussed some approaches to solving
inconsistency problems, notably the Merge-Truncate-Merge post-processing proce-
dure from Guha et al. (2021). An approach to solve the inconsistency problem
in the Dirichlet process mixture model is to add a prior on the parameter of the
Dirichlet process. We presented in Chapter 3 the same approach for Pitman–Yor
process mixture models. We proved the inconsistency for the number of clusters of
Pitman–Yor mixture models when there is a prior on the concentration parameter.

In the second part, Chapter 4 provides some applied insight into Bayesian non-
parametric (BNP) mixture modeling, particularly a practical application of Bayesian
nonparametric mixture models. In this chapter, we proposed a new approach to as-
sess ecological risk using Bayesian nonparametric mixture models. The proposed
model has several advantages due to its Bayesian nonparametric nature alongside
the fact that it is a mixture model. The model notably deals with multimodality
and provides some uncertainty quantification and clustering estimation. In Chap-
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ter 4, the loss-based clustering approach proposed in Wade and Ghahramani (2018)
is used to find a point estimate of the underlying partition. We exploited this clus-
tering using a nonnegative tensor factorization. We obtained groups of species and
contaminants, which depend on the type of contaminants but do not reveal any
taxonomic link for species.

Perspectives

In what follows, we mention a few perspectives for each work in this thesis. One of
the perspectives is an ongoing project and is more detailed.

BNP approach to Species Sensitivity Distribution (SSD)

Chapter 4 discussed a Bayesian nonparametric approach to assessing ecological risk
using SSD method. We proposed a Bayesian nonparametric mixture model to es-
timate the risk distribution for one contaminant. We also study the information
between the contaminants using the Nonnegative Tensor Factorization (NTF) as a
post-processing procedure. Our results show that this information is significant, as
the contaminant clusters found group together contaminants of a similar type. A
natural extension of this work would be to incorporate the information from the
contaminants in the model. We could consider all contaminants simultaneously by
using a hierarchical model. This way, a post-processing procedure such as NTF will
no longer be necessary to obtain this information, as the contaminants clustering will
be provided by a Bayesian model. The uncertainties associated with this clustering
will then be available thanks to the model.

Furthermore, it will be interesting to have theoretical validations of the clustering
summarizing method used in Chapter 4. This is discussed in the last perspective of
the thesis.

Number of cluster consistency

Chapter 2 contributed to extending some inconsistency results to a class of priors,
Gibbs-type priors, and their finite-dimensional representations. A natural perspec-
tive to this work is to generalize the inconsistency results to a more general class
of priors, the homogeneous normalized random measures with independent incre-
ments (NRMI) and its corresponding finite-dimensional representation normalized
infinitely divisible multinomial process (NIDM). This extension is not an obvious
result as the priors’ exchangeable partition probability function (EPPF) are com-
plex.

143



Perspectives

Simulation. Another natural way to improve the contribution presented in Chap-
ter 2 is to conduct a simulation study also for the Pitman–Yor multinomial process
(PYM). Indeed, this prior is more flexible than the Dirichlet multinomial process
(DMP) but less used in practice. The PYM does not satisfy the conditions to apply
Theorem 2.2 in Rousseau and Mengersen (2011). Hence it would be interesting to
study the behavior of the mixing measure weights. A simulation study could show
a difference in behaviour compared to the DMP in practice. It is also possible that
the simulation study will show similar behavior; in this case, we might assume that
the result of Theorem 2.2 holds for PYM but that some conditions could be relaxed.

Repulsive mixtures. At the end of Chapter 2, we discussed another possible
class of Bayesian nonparametric mixture models known as repulsive mixture models.
These models introduce some dependence on the components; they solve a well-
known problem of e.g. Dirichlet process mixture model, which tends to create
extra small clusters. While this sounds appealing, there is still a lack of theoretical
guarantees for the repulsive mixture models. A recent paper Beraha et al. (2023)
provides an EPPF for some particular repulsive mixture models. For these special
cases, it could be possible, using the same machinery as in Chapter 2, to provide
some consistency results for the number of clusters.

Misspecification. In the first part of this thesis, Bayesian nonparametric mixture
models are misspecified in the sense that an infinite number of components mixture
model is used to estimate a finite mixture model. This partially explains the incon-
sistency results. An interesting remaining open question is to study the consistency
of the number of clusters when the true number of components is infinite, K0 =∞,
or when it grows to infinity with the data sample size n. More precisely, we can
wonder if the number of clusters of a Bayesian nonparametric mixture model will
grow at the same rate as the number of components in the true distribution. Some
ideas to solve this problem are discussed in Yang et al. (2020), which provide lower
bounds on the ratio of posterior probabilities studied in Proposition 2.1. Providing
some upper bounds on these ratios and studying the asymptotic regime of these
bounds will be a way to answer this question.

Another type of misspecification can also be considered to get more realistic
results. In the first part, we made the strong assumption that the kernel distribu-
tion was well-specified. A decisive improvement would be to prove some consistency
while relaxing this assumption. However, as proved in Cai et al. (2021), adding even
a small amount of misspecification leads to strong inconsistency even for mixture of
finite mixture (MFM) models which are consistent in the well-specified case. The
question of consistency under misspecification is an interesting and tough problem.
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Indeed, most of the tools used in this thesis would have to be adapted, modified,
or extended to deal with kernel misspecification. Inspiration for this could be taken
from Guha et al. (2021), which shows some contraction rates for mild misspecifica-
tion, or from Kleijn and van der Vaart (2006), which proves rates of convergence for
density estimation under misspecification.

Necessity. In Chapter 2, we introduce Theorem 2.1 (Miller and Harrison 2014).
This result states inconsistency for the number of clusters of mixture models sat-
isfying Conditions 3.1 and 2.1. An interesting open question about this theorem
is whether the conditions are sharp or not. In other words, since these conditions
are sufficient, we wonder whether they are necessary. This question is important
because the same conditions could be used to prove consistency results. As a pre-
liminary finding, the MFM models, which are known to be consistent, do not satisfy
Condition 2.1. This raises the question of whether this is also the case for other
mixture models.

Contraction rate. The Merge-Truncate-Merge algorithm introduced in Chap-
ter 2 can be used as a solution to inconsistency. To apply this procedure, all you
need to know is the contraction rate in the Wasserstein distance of the model’s mix-
ing measure. Some contraction rates for different models are available in literature
(see e.g. Ho and Nguyen 2016; Nguyen 2013). In this thesis, we provided a mixing
measure contraction rate for the Pitman–Yor process (PY) mixture model in a quite
restrictive case. Our result holds for a univariate location mixture. First, extending
these results to a location-scale mixture would be interesting as these mixtures are
more commonly used in practice. Our result uses a Lp contraction rate proved in
Scricciolo (2014). Direct study of the Wasserstein distance might be one way of
finding a more general contraction rate, but this is not a simple problem.

Hyperprior. Chapter 3 also contributes to the question of consistency for the
number of clusters in Bayesian nonparametric mixture models. In this chapter,
the idea to put an hyperprior on the parameters of the mixing measure prior as in
Ascolani et al. (2022) is studied for the PY prior. In the Dirichlet process (DP)
mixture model case, it is possible to deal with the inconsistency by adding a prior
on the concentration parameter. In the PY case, the inconsistency remains when
adding a prior on the concentration parameter and keeping the discount parameter
fixed. A natural extension of this work is to study the case where the discount
parameter σ is also considered random and is assigned some prior distribution. The
study of the normalized stable process (NS) mixture model with a prior on σ could
be a natural first step for this, as NS is a particular case of PY with α equals 0.
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Another possible extension is to study other priors, such as the DMP case. In both
cases, the difficulty comes from the fact that it will no longer be possible to separate
the ratio, studied in Chapter 3, in a product of two distinct terms.

To sum up, the first part of this thesis focused on estimating the number of
components in mixture models. However, this number of components is not the
only quantity of interest relevant to mixture modeling. An even more informative
quantity of interest is the underlying partition of the data. This extension and its
advantages are developed in the following section.

Partition point-estimate

In Chapter 4, we used the variation of information (VI) loss-based method to esti-
mate the data clustering. This choice follows some empirical results, see e.g. Wade
and Ghahramani (2018); Chaumeny et al. (2022). However, as presented in Sec-
tion 1.3, theoretical results in the decision-theoretic framework for data clustering
estimation are scarce. An ongoing project in collaboration with Filippo Ascolani
aims to fill some of these theoretical gaps in the literature. I started this project
with Filippo Ascolani during my PhD, while I was visiting the Statistical Depart-
ment of Duke University.

As presented in Section 1.3, the problem of finding a good estimator for data
clustering is complex. A way to face this issue is to choose a point estimate given a
loss L. The point estimate z⋆1:n is the estimate of the data partition, which minimizes
the posterior expected loss

z⋆1:n = arg min
ẑ1:n

E [L(z1:n, ẑ1:n) | X1:n] = arg min
ẑ1:n

∑
z1:n

L(z1:n, ẑ1:n)p(z1:n | X1:n).

Rajkowski (2019) proved some results on the Bayesian estimator based on the 0− 1
loss function L0−1, the Maximum a posteriori (MAP). Firstly, it is proved that the
minimizer under this loss is a unique convex partition. A convex partition is defined
in Rajkowski (2019) as a partition that divides data into clusters whose convex hulls
are disjoints with possibly the exception of one point. This leads to consistency
results for the MAP in some special cases (Ascolani and Ghidini 2023). However, the
0− 1 loss function L0−1 is very basic. When n is large, a posterior sample generally
rarely visits the same clustering twice, making the empirical MAP of the Markov
chain Monte Carlo (MCMC) output very sensitive to the chain’s initialization and
of limited validity in practice. Other losses have been proposed with some good
behavior in practice. The Binder loss (Binder 1978) and the variation of information
loss (Meilă 2007) are the most used in practice (Wade 2023). Here, the focus is on
the Binder loss because of its simple formulation.
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We recall that the Binder loss is of this form

B(z1:n, ẑ1:n) =
∑
i<i′

ℓ1Izi=zi′ Iẑi ̸=ẑi′ + ℓ2Izi ̸=zi′ Iẑi=ẑi′ ,

where z1:n, ẑ1:n are the latent clustering allocation variables, see Section 1.3 for
more details. In the following, we will consider the case where ℓ1 = ℓ2 = 1. Because
of its pairwise representation, this loss is easier to study than, for example, the
variation of information (Section 1.3). Consequently, the expected Binder loss is a
function of pairwise clustering equality probabilities. Therefore, the probability of
two observations being in the same cluster is a key quantity.

We study a specific mixture model defined as follows

Xi | θi
ind∼ N (· | θi, 1), θi | G

iid∼ G, G ∼ Gt,

where Gt denotes a Gibbs-type prior with a standard Gaussian distribution base
measure. The Gibbs-type prior, described in Section 1.1, is a general class of priors
such that the same probability a priori is given on partitions of the same cluster
sizes.

In the following, we present our preliminary results from the study of the Binder
loss using the model above. Our objective is to prove that the expected Binder risk
of a convex partition is lower than the risk of any non-convex partition with the
same cluster sizes. We expect this to be the case for Gibbs-type priors since they
depend only on the cardinality of the clusters.

Prior. In this case, the a priori expected Binder loss gives interesting information:

E [L(z1:n, ẑ1:n)] =
∑
i<i′

P (zi = zi′)Iẑi ̸=ẑi′ + P (zi ̸= zi′)Iẑi=ẑi′

= P (z1 = z2)
∑
i<i′

Iẑi ̸=ẑi′ + [1− P (z1 = z2)]
∑
i<i′

Iẑi=ẑi′ .

With a Gibbs-type prior, the zi are identically and independently distributed (i.i.d.)
a priori. The a priori point estimate z⋆prior is the point estimate minimizing the prior
expected loss:

z⋆prior = arg min
ẑ1:n

E [L(z1:n, ẑ1:n)]

= arg min
ẑ1:n

P (z1 = z2)
∑
i<i′

Iẑi ̸=ẑi′ + [1− P (z1 = z2)]
∑
i<i′

Iẑi=ẑi′ .

Three scenarios are possible depending on the quantity P (z1 = z2).

1. If P (z1 = z2) < 1/2 then the second term [1−P (z1 = z2)]
∑
i<i′ Iẑi=ẑi′ dominates
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and z⋆prior characterizes the partition with n singletons. Each observation is in
its own cluster.

2. If P (z1 = z2) > 1/2, the first term P (z1 = z2)
∑
i<i′ Iẑi ̸=ẑi′ dominates. Then

z⋆prior characterizes the partition with 1 cluster where all the observations are
clustered together.

3. Finally, if P (z1 = z2) = 1/2, neither term dominates and all possible partitions
of {1, . . . , n} minimize the expected loss.

Interestingly, this result is intuitive, as the prior probability for two observations to
be clustered together characterizes the point-estimate clustering obtained.

Posterior. Working on the posterior expected risk of the Binder loss is more chal-
lenging. Similarly to the prior case, a key quantity is now the posterior probability
for two observations to be in the same cluster. This quantity is of the following
form:

p(zi = zj | X1:n) =
∑
s>1

∑
A∈As(n)

s.t. ∃ℓ,Xi,Xj∈Aℓ

p(A | X1:n)

=
∑
s>1

∑
A∈As(n)

s.t. ∃ℓ,Xi,Xj∈Aℓ

p(A) p(X1:n | A)
p(X1:n) .

As a starting point, the focus is on a univariate framework. In this framework, the
observations can be ordered, and the convex partitions defined above are ordered
partitions. More formally, we now consider the ordered dataset X(1):(n) and the
associated clustering-allocation variables z(1):(n) where the clusters are relabeled with
z(1) = 1. A convex partition is characterized by the behavior of all the triplets of
z(1):(n). The partition is convex if and only if all triplets of z(1):(n) are ordered. In
this context, we study the posterior distribution of the allocation variables, and in
particular, we focus on the three-point scenario.

We consider three ordered observations: X(1), X(2) and X(3). We compute the
posterior probability that X(1) and X(3) are grouped together while X(2) is in another
cluster. With a Gibbs-type process prior, we proved that this probability is smaller
than having either X(1) and X(2) or X(2) and X(3) grouped,

p(z(1) = z(3), z(1) ̸= z(2) | X1:n) ≤ p({z(1) = z(2), z(1) ̸= z(3)}

∪ {z(2) = z(3), z(1) ̸= z(3)} | X1:n).

148



Conclusion & Perspectives

A similar result also holds in a four points scenario,

p(z(1) = z(4), z(2) = z(3), z(1) ̸= z(2) | X1:n) ≤ p(z(1) = z(2), z(3) = z(4), z(1) ̸= z(3) | X1:n).

We can also show a result for specific partitions. We define two partitions the first
one Ã ∈ As(n) is convex and the second one Â ∈ As(n) is defined as,

Â1 ̸= Ã1, Â2 ̸= Ã2, Â1 ∪ Â2 = Ã1 ∪ Ã2, Âi = Ãi, i = 3, . . . , s,

hence elements in Â1 and Â2 are not in a convex order, i.e. there exist (i, j) ∈ Â1

and k ∈ Â2 such that Xi < Xk < Xj. We proved, in preliminary findings, that the
posterior probability of Ã is greater than the one of Â for a case where Ã1 and Ã2

are equal-size clusters. The next step is to generalize this finding for any cluster
size.

We then study the posterior expected risk associated with a convex partition.
Because of previous results on the posterior distribution, we expect that this risk
will be smaller than the risk of any non-convex partition with the same cluster sizes.
However, the generalization of the previous findings to the posterior expected risk
is not straightforward. Finally, we aim to show that similar properties as proved for
the L0-1 loss in Rajkowski (2019) also hold for the Binder loss and then extend it
for other losses such as the VI loss.
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